K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)

Vậy ...

b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)

Vậy ...

28 tháng 9 2019

a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)

=>\(\frac{x}{7}=\frac{12}{7}\) 

x=12

=>\(\frac{y}{3}=\frac{12}{7}\)

y=\(\frac{36}{7}\)                            

=>\(\frac{z}{4}=\frac{12}{7}\)

z=48/7

vây x=12;y=36/7;z=48/7

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

26 tháng 6 2020

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)và 3x + y - 2z = 14

=> \(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}\)và 3x + y - 2z = 14

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}=\frac{3x+y-2z}{9+5-16}=\frac{14}{-2}=-7\)

\(\frac{3x}{9}=-7\Rightarrow3x=-63\Leftrightarrow x=-21\)

\(\frac{y}{5}=-7\Rightarrow y=-35\)

\(\frac{2z}{16}=-7\Rightarrow2z=-112\Leftrightarrow z=-56\)

Sửa : 7/5 => y/5

Áp dụng t/c dãy tỉ số bằng nhau ta có 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{3x+y-2z}{3.3+5-2.8}=\frac{14}{-2}=-7\)

\(\frac{x}{3}=-7\Leftrightarrow x=-21\)

\(\frac{y}{5}=-7\Leftrightarrow y=-35\)

\(\frac{z}{8}=-7\Leftrightarrow z=-56\)

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

23 tháng 7 2017

 x/ 3 = y/5 suy ra  x/ 18  = y / 30

 y/6 =z/7 suy ra y/30 = z/35

Tự làm nhé sau đó áp dụng bình thường ta có : x/18= y/30 = z/35

23 tháng 7 2017

Ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow5x=3y\Leftrightarrow x=\frac{3y}{5}\left(1\right)\)

            \(\frac{y}{6}=\frac{z}{7}\Leftrightarrow6z=7y\Leftrightarrow z=\frac{7y}{6}\left(2\right)\)

Thay (1) và (2) vào biểu thức \(3x+y-2z=42\);ta được : 

\(\frac{3y.3}{5}+y-\frac{7y.2}{6}=42\)

\(\Leftrightarrow54y+30y-70y=42.30\)

\(\Leftrightarrow14y=1260\Leftrightarrow y=90\)

Với \(y=90\Rightarrow x=\frac{3.90}{5}=54;z=\frac{7.90}{6}=105\)

Vậy ... 

18 tháng 12 2016

Theo đề bài, ta có:

\(\frac{x}{8}=\frac{y}{-7}=\frac{z}{12}\) và -3x + 10x - 2z

ADTCDTSBN:

\(\frac{x}{8}=\frac{y}{-7}=\frac{z}{12}=\frac{3x}{24}=\frac{10x}{-70}=\frac{2z}{24}=\frac{3x+10x-2z}{24+\left(-70\right)-24}=\frac{236}{-70}\)

*\(\frac{x}{8}=\frac{236}{-70}\rightarrow x=8\cdot\frac{236}{-70}=-\frac{944}{35}\)

*\(\frac{y}{-7}=\frac{236}{-70}\rightarrow y=-7\cdot\frac{236}{-70}=\frac{118}{5}\)

*\(\frac{z}{12}=\frac{236}{-70}\rightarrow12\cdot\frac{236}{-70}=-\frac{1416}{35}\)

\(\Rightarrow Vậy:x=-\frac{944}{35};y=\frac{118}{5};y=-\frac{1416}{35}\)

tích mình đi

ai tích mình 

mình tích lại 

thanks

4 tháng 10 2016

Ta có:  \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)

\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

\(=\frac{4.\left(3x-2y\right)}{4.4}=\frac{3.\left(2z-4x\right)}{3.3}=\frac{2.\left(4y-3z\right)}{2.2}\)

\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)

\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y-z}{\frac{1}{12}+\frac{1}{8}-\frac{1}{6}}=\frac{-10}{\frac{1}{24}}=-10.24=-240\)

\(\Rightarrow\begin{cases}x=-240.\frac{1}{12}=-20\\y=-240.\frac{1}{8}=-30\\z=-240.\frac{1}{6}=-40\end{cases}\)

Vậy x = -20; y = -30; z = -40

5 tháng 10 2016

Giỏi nhở~

6 tháng 10 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

ê nhỏ tự túc đê