Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x.y.z=810.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
\(x.y.z=810\)
=> \(2k.3k.5k=810\)
=> \(30k^3=810\)
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k=3.\)
Với \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)
Chúc bạn học tốt!
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số = nhau , ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) = \(\frac{x-y+z}{10-15+21}\) = \(\frac{32}{16}\) = 2
Vậy: x = 2.10 = 20
y = 2.15 = 30
z = 2.21 = 42
b) Ta có: 2x = 3y = 5z
=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\) => \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta đc:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) = \(\frac{x+y-z}{15+10-6}\) = \(\frac{95}{19}\) = 5
Vậy: x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
\(\text{Câu 1: }3x=4y;2y=5z\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{20+15+6}=\frac{58}{41}\)
xme lại đề