Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2x=3y 5y=7z
=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)
\(\frac{x}{21}=-2=>x=-2.21=-42\)
\(\frac{y}{14}=-2=>y=-2.14=-28\)
\(\frac{z}{10}=-2=>z=-2.10=-20\)
b) 4x = 7y và \(x^2+y^2=260\)
Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)
\(x^2+y^2=49k^2+16k^2=65k^2=260\)
\(\Rightarrow k^2=4\Rightarrow k=+-2\)
Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)
\(\frac{y}{4}=2\Rightarrow y=4.2=8\)
Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)
\(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)
Kết luận : \(x=+-14\)
\(y=+-8\)
câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2= 64
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{16}=k\)
=> x2 =4k
y2= 16k
thay vào : x2.y2= 64
Ta có: 4k.16k= 64
64.k2 = 64
=> k = -1 ; 1
=> x2= 4.k => x2= -4; 4=> x= 2;-2
tương tự tìm y
Mình chỉ bt làm câu d)
Cách 1:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)
\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)
Với x = 12 thì y = 180 : 12 = 15
Với x = -12 thì y = 180 : (-12) = -15
* Cách 2:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)
Ta có:
\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)
Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a
a) \(4x=3y<=>\frac{x}{3}=\frac{y}{4}=>\frac{x}{15}=\frac{y}{20}\)
\(7y=5z<=>\frac{y}{5}=\frac{z}{7}=>\frac{y}{20}=\frac{z}{28}\)
Ap dung tinh chat bac cau ta duoc:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=>\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
=> x = 45 ; y=60 ; z=84
\(1.\)
\(a.\)
\(\dfrac{x}{-150}=-\dfrac{6}{x}\)
\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=\pm30\)
\(2.\)
\(a.\) \(2x=3y;5y=7z\) và \(3x-7y+5z=30\)
Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)
\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)
\(\dfrac{y}{14}=2\Rightarrow y=28\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
Vậy : ..................
Tìm x,y,z biết 3x+5z-7y=30
Đề này cn thiếu j ko z
Phần đầu thiếu đề.
Phần 2:
\(x^2+7x+6=0\)
\(x^2+x+6x+6=0\)
\(x\left(x+1\right)+6\left(x+1\right)=0\)
\(\left(x+6\right)\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x+6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Vậy x = -1, x = -6
\(x^3+2x^2+x+2=0\)
\(x^2\left(x+2\right)+\left(x+2\right)=0\)
\(\left(x^2+1\right)\left(x+1\right)=0\)
\(\left\{{}\begin{matrix}x+1=0\Rightarrow x=-1\\x^2+1\Rightarrow x\in\varnothing\end{matrix}\right.\)
Vậy x = -1.