K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a) Ta có : 2x = 3y => \(\frac{x}{3}=\frac{y}{2}\) 

7z = 5y => \(\frac{y}{7}=\frac{z}{5}\)

=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)

+) \(\frac{x}{3}=\frac{y}{2}\)=> \(\frac{x}{21}=\frac{y}{14}\)

+) \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> x = 2.21 = 42 , y = 2.14 = 28 , z = 2.10 = 20

b) Ta có : x : y : z = 3 : 5 : (-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=-2k\end{cases}}\)

=> 5x = 15k , y = 5k , 3z = -6k

=> 5x - y + 3z = 15k - 5k + (-6k)

=> -16 = 10k - 6k

=> -16 = 4k

=> k = -4

Với k = -4 thì x = 3.(-4) = -12 , y = 5.(-4) = -20 , z = (-2).(-4) = 8

Vậy : ....

11 tháng 11 2016

a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)

b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

11 tháng 11 2016

a) Giải:

Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

+) \(\frac{x}{3}=31\Rightarrow x=93\)

+) \(\frac{y}{5}=31\Rightarrow y=155\)

+) \(\frac{z}{-2}=31\Rightarrow z=-62\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(93;155;-62\right)\)

b) Giải:

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

+) \(\frac{x}{21}=2\Rightarrow x=42\)

+) \(\frac{y}{14}=2\Rightarrow y=28\)

+) \(\frac{z}{10}=2\Rightarrow z=20\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(42;28;20\right)\)

8 tháng 9 2017

2x = 3y => x/3 = y/2 ; 5y = 7z => y/7 = z/5

x/3 = y/2 ; y/7 = z/5 => x/3 = 7y/14 ; 2y/14 = z/5 => x/21 = y/14 = z/10 => 5x/105 = 7y/98 = 5z/50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

5x/105 = 7y/98 = 5z/50 = 5x - 7y + 5z / 105 - 98 + 50 = 30/57

.......

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

14 tháng 11 2017

1/ Ta có xy=-6

Với x=-6 => y=1

x=-3 => y=2 

x= -2 => y=3

x=-1 => y=6

2/ Ta có x=y+4 

Thay x=y+4 vào bt, ta được 

<=> y+4-3/y-2 =3/2

<=> y+1/y-2=3/2

<=> 2(y+1)=3(y-2)

<=> 2y +2 = 3y - 6

<=> 3y - 2y= 2+ 6

<=> y= 8 <=> x= 12

3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5

-4/8 = -7/y <=> y=(-7)*8/(-4) =14

-4/8 = z/-24 <=> z= (-4)*(-24)/8=12

22 tháng 4 2021

2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42

7 tháng 10 2021

Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )

Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)

Thay vào \(3x+5z-7y=30\)ta có ;

\(3.21k+5.10k-7.14k=30\)

\(63k+50k-98k=30\)

\(15k=30\)

\(k=2\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

25 tháng 9 2017

Có \(2x=3y;5y=7z\) Suy ra \(5.2x=5.3y;3.5y=3.7z\)

\(\Rightarrow2.5.x=3.5.y=3.7.z\)

Chia các vế cho 2.3.5.7 ta được: \(\frac{x}{3.7}=\frac{y}{2.7}=\frac{z}{2.5}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{5x}{5.21}=\frac{y}{14}=\frac{7y}{7.14}=\frac{z}{10}=\frac{5z}{5.10}\)

\(\Rightarrow\frac{x}{21}=\frac{5x}{105}=\frac{y}{14}=\frac{7y}{98}=\frac{z}{10}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}\)

\(\Rightarrow x=21.\frac{30}{37}\)\(y=14.\frac{30}{57}\)\(z=10.\frac{30}{57}\)

29 tháng 7 2015

Ta co : 2x=3y;5y=7z va 5x-7y+5z=30

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

\(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{2y}{14}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{5x}{105}=\frac{7y}{98}=\frac{5z}{50}=\frac{5x-7y+5z}{105-98+50}=\frac{30}{57}=?\)

\(Ta\ có:\)

\(2x=3y\)

\(\frac{x}{21}\)=\(\frac{y}{14}\)(1)

\(5y=7z\)

\(\frac{y}{14}\)=\(\frac{z}{10}\)(2)

\(Từ\ (1)\ và\ (2)\ suy\ ra: \)\(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)

\(Áp\ dụng\ tính\ chất\ dãy\ tỉ\ số\ bằng\ nhau\, ta\ có: \)

\(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)=\(\frac{3x}{63}\)=\(\frac{7x}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=\(2\)

\(\hept{\begin{cases}x=2.21\\y=2.14\\z=2.10\end{cases}}\text{⇒}\)\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

lời giải mấy một hai câu em có tự làm dựa theo đề bài

15 tháng 7 2016

2x=3y;5y=7z

=>x/3=y/2;y/7=z/5

=>x/21=x/14;y/14=z/10

=>x/21=y/14=z/10

=>3x/63=7y/98=5z/50

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

3x/63=7y/98=5z/50=3x-7y+5z/63-98+50=30/15=2

suy ra : 3x/63=2 =>3x=126 =>x=126:3=42

7y/98=2 =>7y =196 =>y=196:7=28

5z/50=2 =>5z = 100 => z=100:5=20

15 tháng 7 2016

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ 1 và 2 

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số = nhau ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\frac{x}{21}=2\Rightarrow x=42\)

\(\frac{y}{14}=2\Rightarrow y=28\)

\(\frac{z}{10}=2\Rightarrow z=20\)