K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Ta co pt \(\Leftrightarrow x^2-4x+4+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)

Nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy \(x=2;y=-3\)

10 tháng 10 2017

\(^{x^2-4x+4+y^2+6y+9=0}\)0

\(\left(x-2\right)^2+\left(y+3\right)^2=0\)

x=2 va y=-3

11 tháng 12 2017

\(x^2+y^2-4x+6y+13=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)

Mà ta lại có: \(\left(x-2\right)^2+\left(y+3\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-2\right)^2=0;\left(y+3\right)^2=0\Leftrightarrow x=2;y=-3\)

11 tháng 12 2017

x2 + y2 - 4x + 6y + 13 = 0

=> x2+y2-4x+6y+9+4=0

=> (x2-4x+4)+(y2+6y+9)=0

=> (x-2)2+(y+3)2=0

=> \(\left[{}\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

vậy x=2,y=-3

10 tháng 10 2019

      a)     x+ y- 2x + 4y + 5 = 0

\(\Leftrightarrow\)( x- 2x + 1 ) + ( y2 + 4y + 4 ) = 0

\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )= 0

\(\Rightarrow\)x - 1 = 0 và y + 2 = 0

\(\Rightarrow\)x = 1 và y = - 2

Vậy : x = 1 và y = - 2

b) 4x+ 9y2 - 4x - 6y + 2 = 0

\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )- 6y + 1 ] = 0

\(\Leftrightarrow\)( 2x - 1 )+ ( 3y - 1 )2 = 0

\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0

\(\Rightarrow\)x = 1 / 2 và y = 1 / 3

Vậy : x = 1 / 2 và y = 1 / 3

11 tháng 10 2019

a) \(x^2+y^2-2x+4y+5=0\)

    \(x^2+y^2-2x+4y+1+4=0\)

    \(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)

     \(\left(x-1\right)^2\left(y+2\right)^2=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

b) \(4x^2+9y^2-4x-6y+2=0\)

    \(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)

    \(\left(2x-1\right)^2\left(3y-1\right)^2=0\)

    \(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)

    

18 tháng 7 2018

a) (x+y+4)(x+y-4) = (x+y)2 - 42

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt

18 tháng 7 2018

\(\left(x+y+4\right)\left(x+y-4\right)=\) \(\left(x+y\right)^2-4^2\)

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk tốt

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )

12 tháng 10 2017

a) x2+y2-2x-6y+10=0 <=>(x2-2x+1)+(y2-6y+9)=0

(x-1)2+(y-3)2=0 mà (x-1)2 và (y-3)2 luôn lớn hơn hoặc bằng 0

=>(x-1)2=0=>x-1=0=>x=1

=>(y-3)2=0=>y-3=0=>y=3

18 tháng 7 2018

b)   \(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

c)  \(4x^2-12x-y^2+2y+8\)

\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk

15 tháng 7 2018

\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)

vay ................................................

1 tháng 8 2019

Ta có : 

4x+ 9y2 + 16z- 4x - 6y - 8z + 3 = 0

( 2x )  + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0

\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0

( 2x-1) + ( 3y -1 )2 + ( 4z - 1) 2 = 0

Mà ( 2x-1)\(\ge\)0 với mọi x

     ( 3y-1 )2 \(\ge0\)với mọi y

      ( 4z - 1) \(\ge0\)với mọi z 

 nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)

 Vậy x = 1/2 ; y = 1/3 ; z = 1/4