K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Sai đầu bài hay sao ý bn chỗ 2x^2 +  y^2 + 3x^2 = 316. bn thử kiểm tra lại xem đi

26 tháng 7 2018

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{4}\)

\(\Rightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{49}=\dfrac{3z^2}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x^2}{18}=\dfrac{y^2}{49}=\dfrac{3z^2}{12}=\dfrac{2x^2+y^2+3z^2}{18+49+12}=\dfrac{316}{79}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.18:2=36\\y^2=4.49=196\\z^2=4.12:3=16\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=14\\z=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-14\\z=-4\end{matrix}\right.\end{matrix}\right.\)

24 tháng 7 2018

Đặt  \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)

=>   \(x=3k\)   \(y=7k\)    \(z=2k\)

Ta có:   \(2x^2+y^2+3z^2=316\)

\(\Leftrightarrow\)\(2\left(3k\right)^2+\left(7k\right)^2+3\left(2k\right)^2=316\)

\(\Leftrightarrow\)\(18k^2+49k^2+12k^2=316\)

\(\Leftrightarrow\)\(79k^2=316\)

\(\Leftrightarrow\)\(k^2=4\)

\(\Leftrightarrow\)\(k=\pm2\)

  • \(k=2\)thì:  \(x=6;\)\(y=14;\)\(z=4\)
  • \(k=-2\)thì:  \(x=-6;\)\(y=-14;\)\(z=-4\)

Vậy...

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}=t\)

\(\Rightarrow \left\{\begin{matrix} x=3t\\ y=7t\\ z=8t\end{matrix}\right.\)

Thay vào điều kiện đề bài:

\(2x^2+y^2+3z^2=316\)

\(\Leftrightarrow 2(3t)^2+(7t)^2+3(8t)^2=316\)

\(\Leftrightarrow t^2(2.3^2+7^2+3.8^2)=316\)

\(\Leftrightarrow t^2.259=316\Rightarrow t=\pm \sqrt{\frac{316}{259}}\)

Nếu \(t=\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=3\sqrt{\frac{316}{259}}\\ y=7t=7\sqrt{\frac{316}{259}}\\ z=8t=8\sqrt{\frac{316}{259}}\end{matrix}\right.\)

Nếu \(t=-\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=-3\sqrt{\frac{316}{259}}\\ y=7t=-7\sqrt{\frac{316}{259}}\\ z=8t=-8\sqrt{\frac{316}{259}}\end{matrix}\right.\)

P/s: số không được đẹp cho lắm.

25 tháng 7 2018

Bạn làm sai rồi !

27 tháng 8 2020

x, y, z tỉ lệ với 3, 7, 2

=> \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)

2x2 + y2 + 3z2 = 316

<=> 2.(3k)2 + (7k)2 + 3.(2k)2 = 316

<=> 2.9k2 + 49k2 + 3.4k2 = 316

<=> 18k2 + 49k2 + 12k2 = 316

<=> 79k2 = 316

<=> k2 = 4

<=> k = ±2

Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=7\cdot2=14\\z=2\cdot2=4\end{cases}}\)

Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=7\cdot\left(-2\right)=-14\\z=2\cdot\left(-2\right)=-4\end{cases}}\)

Vậy ( x ; y ; z ) = { 6 ; 14 ; 4 ) , ( -6 ; -14 ; -4 ) }

27 tháng 8 2020

Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Đặt \(\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)Ta có : \(2x^2+y^2+3z^2=316\)

\(2.\left(3k\right)^2+\left(7k\right)^2+3.\left(2z\right)^2=316\)

\(\Leftrightarrow18k^2+49k^2+12k^2=316\Leftrightarrow49k^2=316\Leftrightarrow k=\pm2\)

Tự thay nhé 

1 tháng 8 2016

dễ mà bạn nhưng dài mk ko muốn viết

1 tháng 8 2016

sao vậy giúp mình đi

18 tháng 10 2017

có gì đó sai sai ở câu b

18 tháng 10 2017

k sai nhaa! Ban xem lai di nhaa!!!banhqua