Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x - 1| + |x - 3| < x + 1
Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
=> x + 1 > 2
=> x > 1
+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2
Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn
+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1
=> 2x - x < 1 + 4
=> x < 5
Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài
b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)
=> |x + y + 2| + |2y + 1| = 0
\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)
Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài
a)Ta thấy:\(\begin{cases}\left|x-y+2\right|\ge0\\\left|2y+1\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-y+2\right|+\left|2y+1\right|\ge0\) (1)
Mà \(\left|x-y+2\right|+\left|2y+1\right|\le0\) (2)
Từ (1) và (2) suy ra:
\(\left|x-y+2\right|+\left|2y+1\right|=0\)\(\Rightarrow\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x-y+2=0\\y=-\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x-\left(-\frac{1}{2}\right)+2=0\\y=-\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}\)
b) Ta có: \(\left|x-1\right|\ge0\)
\(\left|2-x\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=4>0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=x-1+2-x=4\)
\(\Rightarrow\left(x-x\right)-\left(1-2\right)=4\)
\(\Rightarrow0+1=4\) ( vô lí )
Vậy x không có giá trị thỏa mãn
Nói chung cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> tất cả các số hạng đều bằng 0
sau đó tính ra là xong
a) | x - 1| + | y - 3| = 0
=> |x -1| = 0 => x = 1
|y-3| = 0 => y = 3
KL:...
b) | x - 1 | + |x-3| + |x-5| = 0
Ta thấy: \(\left|x-1\right|;\left|x-3\right|;\left|x-5\right|\ge0.\)
=> | x - 1 | = 0 => x = 1 mà | 1-3| không bằng 0 (Loại)
...
ko tìm được x
c) \(\left|x-2018y\right|+\left|x-2018\right|\le0\)
mà \(\left|x-2018y\right|;\left|x-2018\right|\ge0\)
=> | x - 2018y| + |x-2018| = 0
=> | x - 2018| = 0 => x = 2018
=> |x-2018y| = 0 => |2018-2018y| = 0 => y = 1
KL:...
2 , kb voi mk thi thay cai avt nha