K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(\left|x-1\right|+\left|x+5\right|=\left|x-1\right|+\left|-x-5\right|\)

\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|x-1-x-5\right|\)

\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|-6\right|=6\)

dấu "=" xảy ra khi \(\left(x-1\right).\left(x+5\right)\ge0\)

\(\Rightarrow-5\le x\le1\)

Vậy x={-5,-4,-3,-2,-1,0,1}

b) \(\hept{\begin{cases}\left(2x-y+3\right)^4\ge0\\\left|y+2\right|\ge0\end{cases}}\)

mà \(\left(2x-y+3\right)^4+\left|y+2\right|=0\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2x-y+3\right)^4=0\\\left|y+2\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-2\end{cases}}\)

vậy \(x=-\frac{5}{2},y=-2\)

25 tháng 6 2023

x1+x+5=x1+x5

⇒∣�−1∣+∣�+5∣≥∣�−1−�−5∣x1+x+5x1x5

⇒∣�−1∣+∣�+5∣≥∣−6∣=6x1+x+56=6

dấu "=" xảy ra khi (�−1).(�+5)≥0(x1).(x+5)0

⇒−5≤�≤15x1

Vậy x={-5,-4,-3,-2,-1,0,1}

b) \hept{(2�−�+3)4≥0∣�+2∣≥0\hept{(2xy+3)40y+20

mà (2�−�+3)4+∣�+2∣=0(2xy+3)4+y+2=0

dấu "=" xảy ra khi \hept{(2�−�+3)4=0∣�+2∣=0\hept{(2xy+3)4=0y+2=0

⇒\hept{�=−52�=−2\hept{x=25y=2

vậy �=−52,�=−2x=25,y=2

19 tháng 7 2018

a)  \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)

b) mk chỉnh lại đề

 \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

c)  \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)

d)  \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

17 tháng 9 2019

1) \(5^x+5^{x+2}=650\)

\(\Rightarrow5^x.1+5^x.5^2=650\)

\(\Rightarrow5^x.\left(1+5^2\right)=650\)

\(\Rightarrow5^x.26=650\)

\(\Rightarrow5^x=650:26\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

Mình chỉ làm câu 1) thôi nhé.

Chúc bạn học tốt!

19 tháng 10 2018

a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)

không tồn tại vì x.x>=0

b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)

\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)

Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)

\(x=15.\frac{10}{17}=\frac{150}{17}\)

\(y=6.\frac{10}{17}=\frac{60}{17}\)

c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)

x=7.5=35; y=3.7=21

d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)

x=2.2=4;  y=2.5=10