Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
xy + 3x - 2y - 6 = 5
=>x(y + 3) - 2(y + 3) = 5
=>(x - 2)(y + 3) = 5.
Vì x, y thuộc Z nên x - 2, y + 3 thuộc Z
=> x - 2, y + 3 thuộc ước nguyên của 5
Lập bảng :
x - 2 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -3 | 1 | 3 | 7 |
y | -4 | -8 | 2 | -2 |
Vậy ......
b. Làm tương tự câu a.
c. Ta có x + y = 3 và x - y = 15
Bài này là tổng hiệu của cấp 1, áp dụng cách làm đó thì ta được số lớn là x = (3 + 15) : 2 = 9
Số bé là y = 9 - 15 = -6
d. Ta có : |x| + |y| = 1
=>|x| = 1 - |y|
Vì |x|, |y| >= 0 và |x| = 1 - |y| nên 0 =< |x|, |y| =< 1
Vì x, y thuộc Z nên x = 0 thì y = 1 hoặc -1 và ngược lại y = 0 thì x = 1 hoặc -1
a) ( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
b) x . ( y - 3 ) = -12
Lập bảng ta có :
y-3 | 12 | -12 | 2 | -2 | -3 | -4 |
x | -1 | 1 | -6 | 6 | 4 | 3 |
y | 15 | -9 | 5 | 1 | 0 | -1 |
c) xy - 3x - y = 0
x . ( y - 3 ) - y = 0
x . ( y - 3 ) - y + 3 = 3
x . ( y - 3 ) - ( y - 3 ) = 3
( x - 1 ) . ( y - 3 ) = 3
Lập bảng ta có :
x-1 | 3 | 1 | -1 | -3 |
y-3 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 4 | 6 | 0 | 2 |
d) xy + 2x + 2y = -16
x . ( y + 2 ) + 2y = -16
x . ( y + 2 ) + 2y + 4 = -12
x . ( y + 2 ) + 2 . ( y + 2 ) = -12
( x + 2 ) . ( y + 2 ) = -12
Lập bảng ta có :
x+2 | 1 | -1 | -2 | -6 | -4 | -3 |
y+2 | -12 | 12 | 6 | 2 | 3 | 4 |
x | -1 | -3 | -4 | -8 | -6 | -5 |
y | -14 | 10 | 4 | 0 | 1 | 2 |
Ta có : (x - 1).(y + 2) = 7
=> (x - 1) và y + 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
x - 1 | -7 | -1 | 1 | 7 |
y + 2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy có 4 cặp x;y thoả mãn : (-6,-3) ; (0 , -9) ; (2 , 5) ; (8, -1)
bài 1.suy ra (x-7)(x+3) là số âm
suy ra x-7 và x+3 là 2 số trái dấu
mà x+3>x-7
suy ra: x+3 >0 suy ra x> -3
x-7<7 suy ra x<7
suy ra x thuộc {-2;-1;0;1;2;3;4;5;6}
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
Ta có: 11 = 1 . 11 = 11 . 1
Lập bảng :
2x + 3 | 1 | 11 | -1 | -11 |
y - 5 | 11 | 1 | -11 | -1 |
x | 1 | 4 | -2 | -7 |
y | 16 | 6 | -6 | 4 |
Vậy ...
xy - 5x + y = 8
=> x(y - 5) + (y - 5) = 3
=> (x + 1)(y - 5) = 3 = 1.3 = 3.1
lập bảng:
x + 1 | 1 | 3 | -1 | -3 |
y - 5 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 8 | 6 | 2 | 4 |
Vậy ...
(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0
x+1 + x+3 +x+5 +....+x+99 =0
Có số số hạng x là : (99-1):2+1= 50 số
Ta có: 50x + ( 1+3+5+...+99) = 0
Đặt A= 1+3+5+...+99
Tổng A là: (99+1).50:2= 2500
=> 50x + 2500 = 0
50x = 0-2500
50x= -2500
x= -2500 :50
x= -50
Vậy...
a) xy - 3x =-19
x(y-3) = -19
=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}
=> y \(\in\){ 4; 22; -16; 2}
Sau bn lập bảng tìm x nha
b) 3x + 4y - xy = 16
3x + y(4-x) =16
12 - [ 3x+ y(4-x)] =12-16
12 - 3x - y(4-x)= -4
3(4-x)- y(4-x) = -4
(3-y) ( 4-x) =-4
Sau bn lập bảng tìm xy nha
Nguồn phần b là của bn Tài nha :>
Bài 1 :
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )
\(x+1+x+3+x+5+...+x+99=0\)
\(x+x+...+x+1+3+...+99=0\)
\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)
\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)
\(\left(x\times50\right)+\left(5000\div2\right)=0\)
\(\left(x\times50\right)+2500=0\)
\(x\times50=0-2500\)
\(x\times50=-2500\)
\(x=-2500\div50\)
\(x=-50\)
Bài 2 :
a ) \(xy-3x=-19\)
\(\Leftrightarrow\)\(x,y\inℤ\)và \(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)
Ta có bảng sau
x | - 19 | 19 | - 1 | 1 |
y - 3 | 1 | - 1 | 19 | - 19 |
y | 4 | 2 | 22 | - 16 |
Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)
b ) \(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)
\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)
\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)
\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\) và \(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=
Ta có bảng sau :
x + 4 | 1 | - 1 | 2 | - 2 | 4 | - 4 |
x | - 3 | - 5 | - 2 | - 6 | 0 | - 8 |
y - 3 | 4 | - 4 | 2 | - 2 | 1 | - 1 |
y | 7 | - 1 | 5 | 1 | 4 | 2 |
Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)
** Bổ sung điều kiện $x,y$ là số nguyên.
Lời giải:
Ta có:
$xy+3x+3y=-16$
$x(y+3)+3(y+3)=-16+9$
$(y+3)(x+3)=-7$
Với $x,y$ nguyên thì $x+3, y+3$ cũng là số nguyên.
Khi đó, ta có các TH sau:
TH1: $x+3=1, y+3=-7\Rightarrow x=-2; y=-10$
TH2: $x+3=-1, y+3=7\Rightarrow x=-4; y=4$
TH3: $x+3=-7, y+3=1\Rightarrow x=-10; y=-2$
TH4: $x+3=7, y+3=-1\Rightarrow x=4; y=-4$