Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
a) x + xy + y = 9
=> x(1 + y) + y = 9
=> x(1 + y) + (1 + y) = 10
=> (x + 1)(1 + y) = 10 = 1 . 10 = 2.5
Lập bảng :
x + 1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
1 + y | 10 | -10 | 5 | -5 | 2 | -2 | 1 | -1 |
x | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
y | -9 | -11 | 4 | -6 | 1 | -3 | 0 | -2 |
Vậy ...
còn lại tương tự
a) \(xy+3x-2y-11=0\)
\(x\left(y+3\right)-2y-6-5=0\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(x-2;y+3\in U\left(5\right)\)
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
b) \(xy+2x+y+11=0\)
\(x\left(y+2\right)+y+2+9=0\)
\(x\left(y+2\right)+\left(y+2\right)=-9\)
\(\left(x+1\right)\left(y+2\right)=-9\)
\(x+1;y+2\in U\left(-9\right)\)
x+1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+2 | -9 | 9 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 | 8 | -10 |
y | -11 | 7 | -5 | 1 | -3 | -1 |
a) $xy+3x-2y-11=0$$x\left(y+3\right)-2y-6-5=0$$x\left(y+3\right)-2\left(y+3\right)=5$$\left(x-2\right)\left(y+3\right)=5$$x-2;y+3\in U\left(5\right)$
b) $xy+2x+y+11=0$
$x\left(y+2\right)+y+2+9=0$$x\left(y+2\right)+\left(y+2\right)=-9$$\left(x+1\right)\left(y+2\right)=-9$$x+1;y+2\in U\left(-9\right)$
x-2 | 1 | -1 | 5 | -5 | ||
y+3 | 5 | -5 | 1 | -1 | ||
x | 3 | 1 | 7 | -3 | ||
y | 2 | -8 | -2 | -4 | ||
x+1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+2 | -9 | 9 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 | 8 | -10 |
y | -11 | 7 | -5 | 1 |
(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0
x+1 + x+3 +x+5 +....+x+99 =0
Có số số hạng x là : (99-1):2+1= 50 số
Ta có: 50x + ( 1+3+5+...+99) = 0
Đặt A= 1+3+5+...+99
Tổng A là: (99+1).50:2= 2500
=> 50x + 2500 = 0
50x = 0-2500
50x= -2500
x= -2500 :50
x= -50
Vậy...
a) xy - 3x =-19
x(y-3) = -19
=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}
=> y \(\in\){ 4; 22; -16; 2}
Sau bn lập bảng tìm x nha
b) 3x + 4y - xy = 16
3x + y(4-x) =16
12 - [ 3x+ y(4-x)] =12-16
12 - 3x - y(4-x)= -4
3(4-x)- y(4-x) = -4
(3-y) ( 4-x) =-4
Sau bn lập bảng tìm xy nha
Nguồn phần b là của bn Tài nha :>
Bài 1 :
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )
\(x+1+x+3+x+5+...+x+99=0\)
\(x+x+...+x+1+3+...+99=0\)
\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)
\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)
\(\left(x\times50\right)+\left(5000\div2\right)=0\)
\(\left(x\times50\right)+2500=0\)
\(x\times50=0-2500\)
\(x\times50=-2500\)
\(x=-2500\div50\)
\(x=-50\)
Bài 2 :
a ) \(xy-3x=-19\)
\(\Leftrightarrow\)\(x,y\inℤ\)và \(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)
Ta có bảng sau
x | - 19 | 19 | - 1 | 1 |
y - 3 | 1 | - 1 | 19 | - 19 |
y | 4 | 2 | 22 | - 16 |
Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)
b ) \(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)
\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)
\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)
\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\) và \(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=
Ta có bảng sau :
x + 4 | 1 | - 1 | 2 | - 2 | 4 | - 4 |
x | - 3 | - 5 | - 2 | - 6 | 0 | - 8 |
y - 3 | 4 | - 4 | 2 | - 2 | 1 | - 1 |
y | 7 | - 1 | 5 | 1 | 4 | 2 |
Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)
xy-3x+2x=-5
<=> xy-x=-5 <=> x.(y-1)=-5 => x=\(\frac{-5}{y-1}=\frac{5}{1-y}\) (1)
Vậy để x nguyên thì 5 phải chia hết cho (1-y) => 1-y={-5; -1; 1; 5}. Ta có:
+/ 1-y=-5 => y=6 Thay vào (1) => x=-1
+/ 1-y=-1 => y=2 Thay vào (1) => x=-5
+/ 1-y=1 => y=0 Thay vào (1) => x=5
+/ 1-y=5 => y=-4 Thay vào (1) => x=1