K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(\left(x+y+1\right)^2=3\left(x^2+y^2+1\right)\)

\(\Rightarrow x^2+y^2+1+2xy+2y+2x=3x^2+3y^2+3\)

\(\Rightarrow3x^2+3y^2+3-x^2-y^2-1-2xy-2y-2x=0\)

\(\Rightarrow2x^2+2y^2+2-2xy-2y-2x=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow x=y=1\)(thỏa mãn)

6 tháng 10 2016

x3+x2+x+1=y3

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có:

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(không thỏa mãn)

Suy ra \(-1\le x\le0\).Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

  • Với \(x=-1\Rightarrow y=0\)
  • Với \(x=0\Rightarrow y=1\)
29 tháng 4 2016

Cái bài này mình không rõ nữa nhưng mình học rồi có nghiệm x;y=(0;1);(-1;0) 

Nhớ tích mk nha

17 tháng 6 2018

chịu thoy

4 tháng 10 2016

bn có thể tham khảo cách này

Với \(\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\) ta có:
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(ko thỏa mãn)

\(\Rightarrow-1\le x\le0\).Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

  • Với \(x=-1\Rightarrow y=0\)
  • Với \(x=0\Rightarrow y=1\)
4 tháng 10 2016

Ta xét 5TH
TH1: x=0 ( tự làm )
TH2: x=1 ( tự làm )
TH3: x=-1 ( tự làm )

TH4 : \(x\le-2\)

\(\Rightarrow2x^2+2x>0\)

\(\Rightarrow x^3+x^2+x+1\le x^3+3x^2+3x+1=\left(x+1\right)^3\)

\(\Rightarrow y^3< \left(x+1\right)^3\)

Dễ dàng CM được \(y^3>x^3\)

Từ đó suy ra pt vô nghiệm
TH5: \(x\ge2\)

Làm tương tự như TH4 và Cm đc pt vô nghiệm
Vậy chỉ có nghiệm của TH1 và TH3 là thỏa mãn ( TH2 ra nghiệm vô tỉ )