K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Theo đề ta có: /x/ là số dương

                       /y/ là số dương

=> /x/+/y/ là số dương

Mà /x/+/y/ bé hơn hoặc bằng 3 nên /x/+/y/={0;1;2;3}

TH1: /x/+/y/=0 => x=y=0

TH2: /x/+/y/=1 => x={-1;0;1};y={-1;0;1}

TH3 /x/+/y/=2 => x={-2;-1;0;1;2);y={-2;-1;0;1;2}

TH4: /x/+/y/=3 => x={-3;-2;-1;0;1;2;3};y={-3;-2;-1;0;1;2;3}

 

                     

                       

9 tháng 1 2016

vì /x/ + /y/ < hoặc = 3

=> /x + y/ < hoặc = 3

=> /x +y/ = { 3 ; 2 ; 1; 0}

=> x+y ={ 3; -3; 2; -2 ; 1 ; -1; 0}

* nếu x+y= 3==> x+y= 3+0= 0+3= 1+2=2+1

x={ 3 ;0;1; 2}          y={ 0;3;2;1} 

các mục nếu khác tương tự nha bạn tick cho mình nha

5 tháng 7 2017

 x=1 nha bạn

4 tháng 7 2017

la+bl2=(a+b)2=a2+2ab+b2

(lal+lbl)2=a2+2labl+b2

mà 2labl \(\ge\)2ab

=>la+bl2\(\le\)(lal+lbl)2

=>la+bl\(\le\)lal+lbl

dấu bằng xảy ra khi ab\(\ge0\)

25 tháng 6 2019

a, Với mọi \(x;y\inℚ\)ta có :

\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)

\(\Rightarrow x+y\le|x|+|y|\)

    \(-x-y\le|x|+|y|\)

\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)

\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)

Vậy \(|x+y|\le|x|+|y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0.
 

25 tháng 6 2019

b,

Theo kết quả câu a, ta có :

\(|\left(x-y\right)+y|\le|x-y|+|y|\)

\(\Rightarrow|x|\le|x-y|+|y|\Rightarrow|x|-|y|\le|x-y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0 và   \(|x|\ge|y|\)
 

21 tháng 12 2018

tao chịu

21 tháng 12 2018

Tao cũng chịu thôi