K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LB
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SL
0
AS
0
N
0
NM
1
NT
1
KN
29 tháng 7 2020
Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)
\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)
Đẳng thức xảy ra khi x = y = z = 1
TL
2
11 tháng 7 2016
các bn giỏi toán thân mến,các bn hỏi toán đã biến chúng ta thành osin ,làm k công,chúng ta cứ cày đầu giải còn năn nỉ công nhận,
tui nghĩ chất sám có giá trị cao nhât nên chỉ giải cho các bn giỏi hieu ,còn lại k cần năn nỉ loại ngu công nhận vi chúng chẳng hieu j,
học toán mà k chịu suy nghĩ thi còn lâu moi giỏi