Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(25-y^2=8\left(x-2009\right)^2\)
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là \(25^2-y\ge0\)
Mặt khác do
\(8\left(x-2009\right)^2\) chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó \(y^2\) phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
\(y^2=1\), \(y^2=9\), \(y^2=25\)
\(y^2=1\); \(\left(x-2009\right)^2=3\) (loại)
\(y^2=9\); \(\left(x-2009\right)^2=2\) (loại)
\(y^2=25\); \(\left(x-2009\right)^2=0\Rightarrow x=2009\)
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot4=8\\z=2\cdot6=12\end{matrix}\right.\)
\(\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\Rightarrow x=6,y=9,z=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)
Ta có:\(\frac{x-4}{2}=1\Rightarrow x=6\)
\(\frac{y-6}{3}=1\Rightarrow y=9\)
\(\frac{z-8}{4}=1\Rightarrow z=12\)
a/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{8}-\dfrac{y}{4}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{8}-\dfrac{2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\dfrac{1-2y}{8}=\dfrac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right)x=40\)
Vì \(x,y\in Z;1-2y\in Z;1-2y,x\inƯ\left(40\right)\)
Mà \(1-2y⋮2̸\)
Ta có bảng :
\(y\) | \(1-2y\) | \(x\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(1\) | \(40\) | tm |
\(1\) | \(-1\) | \(-40\) | tm |
\(8\) | \(5\) | \(8\) | tm |
\(3\) | \(-5\) | \(-8\) | tm |
Vậy .................
Ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Leftrightarrow8\left(x-2009\right)^2=25-y^2\)
\(\Leftrightarrow8\left(x-2009\right)^2+y^2=25\)\(\left(1\right)\)
Vì \(y^2\ge0\Leftrightarrow\left(x-2009\right)^2\le\dfrac{25}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009\right)^2=1\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=0\) thay vào \(\left(1\right)\Leftrightarrow y^2=25\Leftrightarrow\)\(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
+) Với \(\left(x-2009\right)^2=1\) thay vào \(\left(1\right)\Leftrightarrow y^2=17\left(loại\right)\)
Vậy ..
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
- Theo bài ra: \(25-y^2=8\left(x-2009\right)^2\)
- Có: \(y^2\ge0;\text{ }\forall y\in R\)
\(\Rightarrow25-y^2\le25;\text{ }\forall y\in R\)
- Có \(\left\{{}\begin{matrix}25-y^2\ge25\\25-y^2=8\left(x-2009\right)^2\end{matrix}\right.\Rightarrow8\left(x-2009\right)^2\ge25\)
\(\Rightarrow\left(x-2009\right)^2\ge\dfrac{25}{8}=3\dfrac{1}{8}\)
\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)
\(\Rightarrow x-2009\in\left\{0;1\right\}\) , do \(x\in N\)
\(\Rightarrow x\in\left\{2009;2010\right\}\)
Sau đó bạn thử từng trường hợp để tìm y nhé.
Kết quả cuối cùng là \(\left(x;y\right)=\left(2009;5\right)\)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)