Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
ta có phương trình đó
<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)
đến đây đưa về ước của 3 thì tự lập bảng nhé
\(x+\sqrt{2-x^2}=4y^2+4y+3=\left(2y+1\right)^2+2\ge2>0\)
Do \(\sqrt{2-x^2}\ge0\Rightarrow x>0\)
AD BĐT Bunhiacopxki cho 2 số x và \(\sqrt{2-x^2}\) , ta có :
\(VT=x+\sqrt{2-x^2}\le\sqrt{\left(1+1\right)\left(x^2+2-x^2\right)}=2\)
Mà \(VP\ge2\) \(\Rightarrow VT=VP=2\)
Dấu " = " xảy ra \(\Leftrightarrow2y+1=0;x=\sqrt{2-x^2}\Leftrightarrow y=-\frac{1}{2};x=1\)
a/ Sửa đề:
\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)
\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)
\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)
\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)
\(4\left(xy+yz+xz\right)+x+y+z=9\)
Mặt khác ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow xy+yz+xz\le\dfrac{1}{3}\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{4}{3}\left(x+y+z\right)^2+\left(x+y+z\right)\ge9\)
\(\Leftrightarrow\left[2\left(x+y+z\right)+\dfrac{3}{4}\right]^2\ge\dfrac{441}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x+y+z\right)+\dfrac{3}{4}\ge\dfrac{21}{4}\\2\left(x+y+z\right)+\dfrac{3}{4}\le\dfrac{-21}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+z\ge\dfrac{9}{4}\\x+y+z\le-3\end{matrix}\right.\) \(\Rightarrow\left(x+y+z\right)^2\ge\dfrac{81}{16}\)
Mà \(P=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge\dfrac{81}{16.3}=\dfrac{27}{16}\)
\(\Rightarrow P_{min}=\dfrac{27}{16}\) khi \(x=y=z=\dfrac{3}{4}\)
pt <=> x^3+4x^2y+y^3+4xy^2 = 36
<=> (x^3+y^3)+(4x^2y+4xy^2) = 36
<=> (x+y).(x^2-xy+y^2)+4xy.(x+y) = 36
<=> (x+y).(x^2-xy+y^2+4xy) = 36
<=> (x+y).(x^2+3xy+y^2) = 36
Đến đó bạn dùng ước bội mà giải từng cái nha
Tk mk