Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)
Dấu '=' xảy ra khi x=4/9
b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)
Dấu '=' xảy ra khi x=-11/9
Bài 2:
=>2x-8/33=0 và 3y+7/45=0
=>2x=8/33 và 3y=-7/45
=>x=8/66=4/33 và y=-7/135
Ta có
\(\left|2x-0,\left(24\right)\right|+\left|3y+0,1\left(5\right)\right|=0\)
\(\Rightarrow\left|2x-\frac{24}{99}\right|+\left|3y+0,\left(5\right)-0,4\right|=0\)
\(\Rightarrow\left|2x-\frac{8}{33}\right|+\left|3y+\frac{5}{9}-\frac{4}{5}\right|=0\)
Ta có
\(\begin{cases}\left|2x-\frac{8}{33}\right|\ge0\\\left|3y+\frac{5}{9}-\frac{2}{5}\right|\ge0\end{cases}\)
\(\Rightarrow\begin{cases}2x-\frac{8}{33}=0\\3y+\frac{5}{9}-\frac{2}{5}=0\end{cases}\)
\(\Rightarrow\begin{cases}2x=\frac{8}{33}\\3y=\frac{7}{45}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{4}{33}\\y=\frac{7}{135}\end{cases}\)
Vậy \(\left(x;y\right)=\left(\frac{4}{45};\frac{7}{135}\right)\)
bn ơi đề là |2x-0,(24) | + |3y + 0,1(55) | =0 chứ ko phải là 0,1(5) đâu nha sửa giúp m vs
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
\(\Rightarrow\frac{2x}{2.5}=\frac{3y}{3.3}=\frac{z}{2}\)
\(\Rightarrow\frac{2x}{10}=\frac{3y}{9}=\frac{2x-3y}{10-9}=\frac{100}{1}=100\)
Ta có: \(\frac{2x}{10}=\frac{x}{5}=100\)\(\Rightarrow x=500\)
\(\frac{3y}{9}=\frac{y}{3}=100\Rightarrow y=300\)
\(\frac{z}{2}=100\Rightarrow z=200\)
Vậy x = 500, y = 300 và z = 200
a)đề hình như thiếu
b)\(\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}=0\)
Vì \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2017}\ge0\)(1)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2008}\ge0\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)\(\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}\ge0\)
Mà VP=0\(\Rightarrow\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}=0\Leftrightarrow\left|x-3y\right|^{2017}=0,\left|y+4\right|^{2008}=0\)
\(\Leftrightarrow x-3y=0,y+4=0\)
\(\Leftrightarrow x-3y=0,y=-4\)
\(\Leftrightarrow x-\left[3\cdot\left(-4\right)\right]=0,y=-4\)
\(\Leftrightarrow x-\left(-12\right)=0,y=-4\)
\(\Leftrightarrow x+12=0,y=-4\)
\(\Leftrightarrow x=-12,y=-4\)
Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)
Ta có: zx + zy = xy + xz => zy = xy => z = x (1)
Ta có: x - z = x - x = 0
(1/3 -2x)^2018 + (3y-x)^2020 <=0
Mà (1/3 -2x) ^ 2018 >= 0 với mọi x ( vì số mũ chẵn)
(3y-x) ^ 2020 >= 0 với mọi x,y ( vì số mũ chẵn)
=> 1/3 - 2x =0 và 3y-x=0
+) 1/3 -2x =0
=> 2x= 1/3 -0 = 1/3
=> x= 1/3 : 2 =1/6
+) 3y-x =0
=> 3y - 1/6 = 0 (vì x = 1/6)
=> 3y = 1/6
=> y = 1/6 : 3 = 1/18
Có 1/x + 1/y = 1 : (1/6) + 1: (1/18) = 6+18 =24 (đpcm)
không chắc lắm
vì thấy kq hơi kì
Silver bullet:thật vi diệu từ x biến thành y