Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)
\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\)
\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\)
cả hai cái mũ 2 đều \(\ge\)0 với mọi x, y
Mà tổng của chúng = 0
=> (x-11+y)2=(x-y-4)2=0
=> x-11+y = 0 => x+y = 11 (1)
x-y-4 = 0 => x-y = 4 (2)
(1), (2) => (tổng hiệu) x = 7,5 ; y = 3,5
3xy + y=4-x
<=>9xy+3y=12-3x
<=>9xy+3y+3x+1=13
<=>3y.(3x+1)+(3x+1)=13
<=>(3x+1)(3y+1)=13
<=> *{3x+1=13y+1=13{3x+1=13y+1=13<=>{x=0y=4{x=0y=4(nhận)
*{3x+1=123y+1=1{3x+1=123y+1=1<=>{x=4y=0{x=4y=0(nhận)
*{3x+1=−13y+1=−13{3x+1=−13y+1=−13<=>{x=−23y=−143{x=−23y=−143(loại)
*{3x+1=−133y+1=−1{3x+1=−133y+1=−1<=>{x=−143y=−23{x=−143y=−23(loại)
Vậy x=4 thì y=0 ; x=0 thì y=4
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi