\(\in Z\) sao cho:

a) /x-3/.(2y+1)=10

b) (x2-1).(y+1)=0

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).

d: =>x+5=0 và 3-y=0

=>x=-5 hoặc y=3

e: =>x-2=0 và y+1=0

=>x=2 và y=-1

15 tháng 1 2015

Bài 2. Trường hợp 1. Với x = - 2 thay vào ta có:     - 2y - 4 + 2y = - 9 suy ra - 4 = - 9 không xẩy ra.

Trường hợp 2.  Với     x \(\ne\) - 2

Ta có: \(xy+2x+2y=-9\Leftrightarrow\left(x+2\right)y=-2x-9\Rightarrow y=-\frac{2x+9}{x+2}\)

Do \(y\in Z\Rightarrow\frac{2x+9}{x+2}\in Z\Rightarrow\frac{2x+4+5}{x+2}\in Z\Rightarrow\frac{2\left(x+2\right)+5}{x+2}\in Z\)

\(\Rightarrow2+\frac{5}{x+2}\in Z\Rightarrow\frac{5}{x+2}\in Z\Rightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\)Với x + 2 = - 5    =>   x = - 7    => y = 1

   Với x + 2 = -1     =>   x = -3     => y = -3

   Với x + 2 = 1      =>   x = -1     => y = 7

   Với x + 2 = 5      =>   x = 3      => y = 3

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

7 tháng 7 2016

\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)

bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)

câu sau tương tự

\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)

\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)

\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)

\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)

\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)

\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)

Tìm đc (y;z)=(4;4);(3;6)

\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)

Nếu \(y=3=>z=3\)

Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)

Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng

2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc