Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^3y^3+x^2y^2+4\)
\(=x^3y^3-x^2y^2+2xy+2x^2y^2-2xy+4\)
\(=xy\left(x^2y^2-xy+2\right)+2\left(x^2y^2-xy+2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
b)\(x^4+x^3+6x^2+5x+5\)
\(=x^4+x^2+x^2+5x^2+5x+5\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)
\(=\left(x^2+5\right)\left(x^2+x+1\right)\)
c)\(x^4-2x^3-12x^2+12x+36\)
\(=x^4-2x^3-6x^2-6x^2+12x+36\)
\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)
\(=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d)\(x^8y^8+x^4y^4+1\)
\(=x^8y^8+2x^4y^4+1-x^4y^4\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1+x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(x^4y^4+2x^2y^2+1-x^2y^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(\left(x^2y^2+1\right)^2-\left(xy\right)^2\right)\left(x^4y^4+1-x^2y^2\right)\)
\(=\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\left(x^4y^4+1-x^2y^2\right)\)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\)\(+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)
\(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\)\(+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\)\(=0\)
Vì \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0,\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\)\(,\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\) và \(a,b,c\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)\(\Rightarrow T=0\)
1/
Đề \(\Rightarrow z^{15}+x^{15}-\left(y^{15}+z^{15}\right)=2\left(y^{2016}-x^{2016}\right)\)
\(\Rightarrow x^{15}-y^{15}=2\left(y^{2016}-x^{2016}\right)\)
+Nếu \(x=y\text{ thì }VT=0=VP\)
+Nếu \(x>y\text{ thì }VT>0>VP\)
+Nếu \(x<\)\(y\) thì \(VT<0\)\(<\)\(VP\)
Vậy \(x=y\)
Làm tương tự, ta có: \(y=z\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x^{15}+x^{15}=2x^{2016}\Leftrightarrow x^{2016}=x^{15}\Leftrightarrow x^{15}\left(x^{2001}-1\right)=0\)
\(\Leftrightarrow x^{2001}=1\text{ (do }x>0\text{)}\)
\(\Leftrightarrow x=1\)
Vậy \(x=y=z=1\)
\(1=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}=\left(\frac{x+y}{2}+1\right)^2-1\)
\(\Rightarrow\left(\frac{x+y}{2}+1\right)^2\ge2\Rightarrow\frac{x+y}{2}+1\ge\sqrt{2}\Rightarrow x+y\ge2\sqrt{2}-2\)
\(1=x+y+xy\ge2\sqrt{xy}+xy=\left(\sqrt{xy}+1\right)^2-1\)
\(\Rightarrow\left(\sqrt{xy}+1\right)^2\le2\Rightarrow\sqrt{xy}+1\le\sqrt{2}\Rightarrow\sqrt{xy}\le\sqrt{2}-1\)
\(\Rightarrow xy\le3-2\sqrt{2}\)
\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}=\frac{x+y+xy}{x+y}+\frac{x+y}{xy}\)
\(=1+\left(\frac{xy}{x+y}+\frac{\left(\sqrt{2}-1\right)^2}{4}.\frac{x+y}{xy}\right)+\frac{1+2\sqrt{2}}{4}.\frac{x+y}{xy}\)
\(\ge1+2\sqrt{\frac{xy}{x+y}.\frac{\left(\sqrt{2}-1\right)^2}{4}\frac{x+y}{xy}}+\frac{1+2\sqrt{2}}{4}.\frac{2\sqrt{2}-2}{3-2\sqrt{2}}=\frac{5+5\sqrt{2}}{2}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\sqrt{2}-1\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
a) \(2^{x+1}.3^y=12^x=4^x.3^x=2^{2x}.3^x\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=2x\\y=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(c,2^x-2^y=2y\left(2^{x-y}-1\right)=256\)(vì x > y)
Ta có; \(256⋮\left(2^{x-y}-1\right)\Rightarrow2^{x-y}-1=1\)
\(\Rightarrow x-y=1\)
\(\Rightarrow2^y=2^8\Rightarrow y=8\)
vậy x = 9; y=8
\(\)