Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Ta có: \(x^2+2y^2+3xy+3x+5y=15\)
\(\Leftrightarrow x^2+2y^2+3xy+3x+5y+2=17\)
\(\Leftrightarrow\left(x^2+xy+2x\right)+\left(2xy+2y^2+4y\right)+\left(x+y+2\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17=1.17=17.1=\left(-1\right)\left(-17\right)=\left(-17\right)\left(-1\right)\)
Thế vô rồi tìm ra nha bạn!
\(\frac{5y^2-6x^2+7xy}{3x^2-10y^2+xy}=\frac{\left(y+2x\right)\left(5y-3x\right)}{\left(2y+x\right)\left(3x-5y\right)}\)
\(=\frac{-y-2x}{2y+x}\)
Vậy A = - y - 2x
a) 5x - 5y + ax - ay = 5(x - y) + a(x - y)
= (5 + a)(x - y)
b) x3 - x + 3x2y + 3xy2 + y3 - y
= (x3 + 3x2y + 3xy2 + y3) - (x + y)
= (x + y)3 - (x + y)
= (x + y)[(x + y)2 - 1]
= (x + y)(x + y + 1)(x + y - 1)
c) x2 - 2x - 3 = x2 + x - 3x -3
= x(x + 1) - 3(x + 1)
= (x - 3)(x + 1)
e) 6x - 9 - x2 = 3x - 9 + 3x - x2
= 3(x - 3) + x(3 - x)
= 3(x - 3) - x(x - 3)
= (3 - x)(x - 3)
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)