Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) x+y =x.y
x=x.y-y
x=y(x-1)
x/y=x-1. do theo bài ra thì x/y=x+y nên x+y=x-1 suy ra y=-1 rồi từ đó tính ra x thôi
a) ta có x-y=2x+2y
x=2x+3y
3y=-x
x/y=3/(-1). do theo đề ra thì x/y= x-y nên suy ra x-y=3/(-1) (1)
mặt khác x/y=2(x+y) nên 2(x+y)=3/(-1)hay x+y=3/(-2)(2)
từ (1)và (2) thì tìm ra x,y thôi
Bạn ơi,đây đâu phải môn tiếng Anh???
\(a)\)Ta có : \(y\ne0\)
\(\Rightarrow x\cdot y=\frac{x}{y}\)nên \(x\cdot y:\frac{x}{y}=1\)hay \(\frac{x\cdot y\cdot y}{x}=y^2=1\)
Vậy : \(\hept{\begin{cases}y=1\\y=-1\end{cases}}\)
Chúc bạn học tốt
\(y\pm0\) nha bạn
\(x.y=x:y\Rightarrow x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy \(y=\orbr{\begin{cases}1\\-1\end{cases}}\) (thỏa mãn)
\(x+y=x.y\Rightarrow\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
Nếu y = 1 thì 1/x = 1-1 = 0
=> x không có giá trị
Nếu y=-1 thì 1/x = 1-(-1) = 2
=> x = 1/2
Vậy y = -1 và x = 1/2
\(xy+x-2y+1=0\)
\(\Leftrightarrow\left(xy+x\right)-\left(2y+2\right)=-3\)
\(\Leftrightarrow x\left(y+1\right)-2\left(y+1\right)=-3\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=-3\)
Đến đây lập bảng ra
Làm nốt !
\(x.y+x-2y+1=0\)
\(\Rightarrow x\left(y+1\right)+2\left(y+1\right)=0\)
\(\Rightarrow\left(x+2\right).\left(y+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)
Vậy x=-2;y=-1
ta co |x+7|+|12+x|=5
=>x+7=5=>x=-2(loại)
=>12+x=5=>x=-7 (tm)
=>x=-7
bn thử lấy máy tính mà bấm xem đúng ko nhé
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)
Ta có:
x + 2y = x.y => x = x.y - 2y = y.(x - 2)
=> x : y = x - 2 = x + 2y
=> 2y = -2
=> y = -1
=> x = -1.(x - 2) = -x + 2
=> x + x = 2 = 2x
=> x = 1
Vậy x = 1; y = -1
\(x.y=x:y\) \(\Rightarrow y^2=1\) \(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
(+) x=1
\(\Rightarrow x+2.1=x.1\)
\(\Rightarrow x+2=x\)
\(\Rightarrow0=-2\) ( vô lý )
(+) Vớ x = - 2
\(\Rightarrow x+2\left(-1\right)=x\left(-1\right)\)
\(\Rightarrow x-3=-x\)
\(\Rightarrow x=\frac{3}{2}\)
Vậy \(\left(x;y\right)=\left(-1;\frac{3}{2}\right)\)
+0 ở cuối thì cộng làm gì ....
\(xy+x+y=12\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=13\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=13\)
Vì x , y nguyên nên x + 1 và y + 1 nguyên
=> x + 1 và y + 1 là ước của 13
Ta có bảng
Vậy \(\left(x;y\right)\in\left\{\left(-14;-2\right);\left(-2;-14\right);\left(0;12\right);\left(12;0\right)\right\}\)
\(xy+x+y=12\)
\(x\left(y+1\right)+\left(y+1\right)=13\)
\(\left(y+1\right)\left(x+1\right)=13\)
Ta có: \(x,y\inℤ\Rightarrow\hept{\begin{cases}y+1\in Z\\x+1\in Z\end{cases}}\)
Mà \(\left(y+1\right)\left(x+1\right)=13\)
\(\Rightarrow\left(y+1\right);\left(x+1\right)\in\text{Ư}\left(13\right)=\left\{\pm1;\pm13\right\}\)
Lập bảng giá trị
-13
0
Vậy có các cặp x;y là: \(\left\{12;0\right\};\left\{-14;-2\right\};\left\{0,12\right\};\left\{-2;-14\right\}\)
Tham khảo nhé~