Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow\int^{\left(x+2\right)y+3x+6=0}_{\left|y\right|+\left|x\right|=5}\Rightarrow\int^{\left(x+2\right)y+3x-0+6=0}_{\left|y\right|+\left|x\right|-5=0}\)
=>(y+3)(x+2)=0(vì x,y nguyên âm )
TH1:y+3=0
=>y=-3
TH2:x+2=0
=>x=-2
vậy (x ; y) nguyên âm thỏa mãn là {-2;-3}
mk chỉ cho đáp án thui nha
kết quả:-2;-3 tink cho mk nha bn
Xét xy+3x+2y+6=0
=>xy+3x+2y+2.3=0
=>y(x+2)+3(x+2)
=>(x+2)(y+3)
=>x+2=0 => x=0 - 2 => x= -2
hoặc
=>y+3=0 => y=0 - 3 => y= -3
Xét x+y=5
Vì 2 số x và y nguyên âm nên cộng lại không thể bằng số dương.
=>x=(/) ; y=(/)
Chú thích: (/):tập hợp rỗng
xy + 3x + 2y + 6 = 0
x( y + 3 ) + 2 ( y + 3 ) = 0
( x+ 2 )( y + 3 ) = 0
=> x + 2 = 0 hoặc y +3 = 0
=> x = -2 hoặc y = -3
(+) x = -2 => lx l = 2
=> lyl = 5 - lxl = 5 - 2 = 3
=> y = 3 hoặc y = -3
=> ( x ; y ) = { -2 ; -3 )
Nói rõ thêm : bài của thang tran
Vì bài yêu cầu x; y nguyên âm nên ta chỉ lấy cặp (x;y) = (-2; -3)
xy+3x+2y+6=0
<=>xy+3x+2y+2.3=0
<=>x(y+3)+2(y+3)=0
<=>(x+2)(y+3)=0
<=>x=-2 và y=-3(thoả mãn là số nguyên âm và |x|+|y|=5)
vậy...
xy+3x+2y+6=0
x(y+3)+2(y+3)=0
(x+2)(y+3)=0
=>x+2=0 hoặc y+3=0
x=0-2 y=0-3
x=-2 y=-3
thỏa mãn |-2|+|-3|=2+3=5=|x|+|y|
Vậy cặp (x;y) cần tìm là (-2;-3)
(x;y) = ( -2; -3) còn cách giải thì tham khảo câu hỏi tương tự nka bn!
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
Ta có : 2x + xy - 3y = 18
=> x(y + 2) - 3y = 18
=> x(y + 2) - 3y - 6 = 18 - 6
=> x(y + 2) - 3(x + 2) = 12
=> (x - 3)(y + 2) = 12
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)
Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6)
Lập bảng xét 12 trường hợp
x - 3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y + 2 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | 4 | 15 | 2 | -9 | 6 | 7 | 0 | -1 | 5 | 9 | 1 | -3 |
y | 10 | -1 | -14 | -3 | 2 | 1 | -6 | -5 | 4 | 0 | -8 | -4 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;
(1 ; -8) ; (-3 ; -4)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)
=> \(x\in\left\{\pm3;\pm4\right\}\)
TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{\pm3;\pm4\right\}\)
2x + xy - 3y = 18
<=> 2x + xy - 6 - 3y = 12
<=> ( 2x + xy ) - ( 6 + 3y ) = 12
<=> x( 2 + y ) - 3( 2 + y ) = 12
<=> ( x - 3 )( 2 + y ) = 12
Lập bảng :
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 7 | -1 | 9 | -3 | 15 | -9 |
2+y | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 10 | -14 | 4 | -8 | 2 | -6 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ta có 12 cặp ( x ; y ) thỏa mãn
( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 ) , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 )