\(\frac{1}{x}+\frac{1}{y}\)nhỏ hơn hoặcbang 3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Ta có

\(\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=\frac{9}{3}=3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{4}{y}\le3\)

\(\Rightarrow\hept{\begin{cases}x+y=3\\\frac{1}{x}+\frac{4}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-y\left(1\right)\\\frac{1}{3-y}+\frac{4}{y}=3\left(2\right)\end{cases}}\)

 \(\hept{\begin{cases}x=3-y\\y^2-4y+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

14 tháng 12 2016

x,y nguyên dương hay x,y dương. Vì x,y dương thì tìm được nhiều lắm

18 tháng 1 2017

Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).

Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)

4 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)

TT...

\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)

\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)

\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)

Vậy GTNN của Q là 3 khi x = y = z = 1

4 tháng 6 2017

ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)

thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)

Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)

\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)

Dấu ''=''xảy ra khi x=y=2

4 tháng 6 2017

\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

13 tháng 10 2019

Câu 1:

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)

Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)

\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)

Dấu = xảy ra khi x=y=1/2

13 tháng 10 2019

Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)

CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1