K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

8 tháng 5 2019

1. A=\(\frac{x^2-1}{x^2+1}\)

=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)

để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN 

mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0. 

khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0

8 tháng 5 2019

Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)

\(=\left|x+2017\right|+\left|2-x\right|\)

\(\ge\left|x+2017+2-x\right|\)

\(=2019\)

Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)

\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)

Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)

21 tháng 10 2016

nhưng x là số gì

 

 

 

9 tháng 7 2018

x ϵ z

27 tháng 9 2019

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)

=> 2x + 7 = 4 

     2x        = 4 - 7 

     2x        = -3

       x        = -3 : 2

       x         = -1,5

   Vậy x = -1,5

18 tháng 7 2018

Ta có : 

\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)

\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)

\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)

\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)

\(\Rightarrow A=\frac{3}{4}x^6y^5\)

Lại có : 

\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)

ADTCDTSBN , ta có : 

\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)

Thay \(x=1;y=\frac{2}{3}\)vào A ta được : 

\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)

\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)

\(\Rightarrow A=\frac{8}{81}\)

Vậy ...

18 tháng 7 2018

ta có hai cách giải

cách 1:

gọi x/3=y/2=k 

=> x=3k và y=2k

vì x+3y=3 => 3k+6k=3

=> 9k=3 => k=1/3

suy ra x=1 và y= 2/3 

* Thay vào x;y vào phép tính trên rồi tự tính nhé

nếu k cho mik mik sẽ gợi ý cách còn lại

THANKS

20 tháng 8 2016

a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

           Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0

        Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

      Dấu = xảy ra khi \(x+\frac{3}{2}=0\)

                                 \(x=-\frac{3}{2}\)

Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

        Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)

               Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

     Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)

                                 \(y+\frac{1}{2}=0;y=-\frac{1}{2}\)

Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)

 

20 tháng 8 2016

a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2

b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\) 

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2

31 tháng 7 2019

d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)

\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)

Đặt  \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)

\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)

Hay \(F\ge\frac{1}{4}\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )

\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)

Đặt \(E=|y-\frac{1}{5}|\)

Vì \(|y-\frac{1}{5}|\ge0;\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)

                          \(\Leftrightarrow y=\frac{1}{5}\)

\(\Rightarrow F+E\ge\frac{1}{4}\)

Hay \(D\ge\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

31 tháng 7 2019

Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em