Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x+y+9=xy-7\)
=> \(x+y+16=xy=>x+16=xy-y=y.\left(x-1\right)\)
\(=>y=\frac{x+16}{x-1}\) (x khác 1)
Mà do y thuộc Z => \(\frac{x+16}{x-1}\in Z=>x+16⋮x-1=>\left(x-1\right)+17⋮x-1=>x-1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(=>x\in\left\{0;2;-16;18\right\}\) (Thỏa mãn do khác 1)
*) Nếu x=0 => 16+y=0=> y=-16.
*) Nếu x=2 => 18+y=2y=> y=18
*) Nếu x=-16 => y=-16y => y=0
*) Nếu x=18 => y=2
Vậy (x,y)=.....
Với \(y^2=zx;z^2=xy\)và ĐK : \(x+y-z=1\), ta có : \(y\cdot y=z\cdot x;z\cdot z=x\cdot y\)và ĐK : \(x+y-z-1=0\).
Với \(x+y-z-1=0\), coi \(1=a\), và chỉ khi \(x+y-z=a\)thì \(x+y-z-a=0\)( vì \(a=1\))
\(x+y-z-a=0\Rightarrow x+y-\left(z+a\right)\Rightarrow x+y=z+a\)(ĐK : \(y^2=zx;z^2=xy;x+y-z=a\))
Vậy thỏa mãn \(x=y=z=1\).