K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(\left(2+4x\right)^2+\left(y-6\right)^2=0\)

\(\left\{{}\begin{matrix}\left(2+4x\right)^2\ge0\\\left(y-6\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2+4x\right)^2+\left(y-6\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(2+4x\right)^2=0\Rightarrow2+4x=0\Rightarrow4x=-2\Rightarrow x=-0,5\\\left(y-6\right)^2=0\Rightarrow y-6=0\Rightarrow y=6\end{matrix}\right.\)

\(\left|8-4x\right|+\left|2x-y\right|=0\)

\(\left\{{}\begin{matrix}\left|8-4x\right|\ge0\\\left|2x-y\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|8-4x\right|+\left|2x-y\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|8-4x\right|=0\Rightarrow8-4x=0\Rightarrow4x=8\Rightarrow x=2\\2.2-y=0\Rightarrow y=4\end{matrix}\right.\)

\(\left|16+0,5x\right|+\left(y-2\right)^2=0\)

\(\left\{{}\begin{matrix}\left|16+0,5x\right|\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left|16+0,5x\right|+\left(y-2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|16+0,5x\right|=0\Rightarrow16+0,5x=0\Rightarrow0,5x=16\Rightarrow x=32\\\left(y-2\right)^2=0\Rightarrow y-2=0\Rightarrow y=2\end{matrix}\right.\)

14 tháng 7 2017

mình giờ mới xem lại trừ sai nhé bạn!!

16+0,5.x=0

0,5.x=-16

x=-0,03125

21 tháng 10 2019

Tính chất của dãy tỉ số bằng nhau

21 tháng 10 2019

c, Ta có: \(\frac{x}{3}=\frac{y}{6}\)\(4x-y=42\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)

Vậy \(x=21\)\(y=42\)

# Băng

18 tháng 9 2018

x2 + 2x = 0

=> x(x + 2) = 0

=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

18 tháng 9 2018

(x - 2) + 3.x2 - 6x = 0

=> (x - 2) + 3x2 - 3x . 2 = 0

=> (x - 2) + 3x.(x - 2) = 0

=> (1 + 3x)(x - 2) = 0

=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)

21 tháng 1 2017

a) Ý 1: Ta có:

/3x - 2017/ \(\ge\) 0 \(\forall\)x \(\in\) Z

=> /3x - 2017/ + 6 \(\ge\) 0 \(\forall\)x \(\in\) Z

=> A \(\ge\) 0 \(\forall\)x \(\in\) Z

Dấu "=" xảy ra khi /3x - 2017/ = 0

=> 3x - 2017 = 0

=> 3x = 2017

=> x = \(\frac{2017}{3}\)

Vậy GTNN của A = 6 khi x = \(\frac{2017}{3}\)

b) Lại có: -(4x - 3)2 \(\ge\) 0

=> 16 - (4x - 3)2 \(\ge\) 16 \(\forall\)x \(\in\) Z

=> D \(\ge\) 16 \(\forall\)x \(\in\) Z

Dấu "=" xảy ra khi (4x - 3)2 = 0

=> 4x - 3 = 0

=> 4x = 3 => x = \(\frac{3}{4}\)

Vậy GTLN của D = 16 khi x = \(\frac{3}{4}\).