Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hai phương trình tương đương :
\(2x^2-8x+15=\left(2x-6\right)\left(mx-3m+1\right)\)
\(\Leftrightarrow2x^2-8x+15=m2x^2-\left(6m+6m+2\right)x+\left(18m-6\right)\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}1=m\\8=12m+2\\15=18m-6\end{cases}}\) ?? Đề sai chăng ?? Không thể tồn tại m thỏa mãn.
Phương trình \(2x^2-8x+15=0\)có 2 nghiệm phức:
\(\orbr{\begin{cases}2-\frac{\sqrt{14}}{2}i\\2+\frac{\sqrt{14}}{2}i\end{cases}}\)
Mà phương trình \(\left(2x-6\right)\left(mx-3m+1\right)=0\)có 1 nghiệm bằng 3
Hai phương trình không có cùng tập nghiệm nên luôn không tương đương
Vậy không có m để hai phương trình tương đương.
câu 1,
a, 2(m-1)x +3 = 2m -5
<=> 2x (m-1) - 2m +8 = 0 (1)
Để PT (1) là phương trình bậc nhất 1 ẩn thì: m - 1 \(\ne\)0 <=> m\(\ne\)1
b, giải PT: 2x +5 = 3(x+2)-1
<=> 2x + 5 -3x -6 + 1 =0
<=> -x = 0
<=> x = 0
Thay vào (1) ta được: -2m + 8 =0
<=> -2m = -8
<=> m = 4 (t/m)
vậy m = 4 thì pt trên tương đương.................
a) (x-1)(2x-1)=0
<=>2x^2 - 3x + 1 =0
Căn bằng hệ số ta có \(\hept{\begin{cases}m=2\\-\left(m+1\right)=-3\\1=1\end{cases}}\)<=>m=2
(x-1)(2x-1)=0
<=>x-1=0 và 2x-1=0
<=>x=1 và x=1/2
với x=1 thay vào
m(12)-(m+1)+1=0
<=>m-m-1+1=0
<=> ko cs gtrị thỏa mãn
Với x=1/2.thay
m *1/4-(m+1) *1/2+1=0
<=> 1/4m-1/2m-1/2+1=0
<=>-1/4m+1/2=0
<=> m=2
Vậy m=2 thì 2 cặp tương đương
Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
\(\Rightarrow x(y+2)-5(y+2)=-10\)
\(\Rightarrow(x-5)(y+2)=-10\)
Vì \(x,y\in Z\Rightarrow x-5,y+2\in Z\)
Ta có bảng sau:
Chúc bạn học tốt!