K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Nhầm các bạn ơi : Tìm x,y biết \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)mong các bạn giúp mình

25 tháng 2 2020

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)nhầm part 2 srry mọi người

29 tháng 10 2016

Áp dụng tính chất dẫy hữu tỉ số bằng nhau

Ta có : \(\frac{x^2+y^2}{x^2+1+y^2}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+1+y^2+x^2+1+y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+y^2+x^2+y^2+3}=1+\frac{x^2+y^2+x^2+y^2}{3}\)

 

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

10 tháng 7 2019

a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)

\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)

b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)

c Tương tự b

2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)

\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)

Xét ước

12 tháng 12 2016

sorry mấy bạn =x+y+z chứ ko phải =x+y=z :P 

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

22 tháng 10 2016

a) Ta có: \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\Rightarrow x+y=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x-y}{3}=\frac{x+y}{2}=\frac{x-y+x+y}{3+2}=\frac{2x}{5}=\frac{1}{2}\Rightarrow x=\frac{5}{4}\Rightarrow y=1-\frac{5}{4}=-\frac{1}{4}\)

b) Ta có: \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\Rightarrow3\left(x-1\right)=3y\Rightarrow x-1=y\)

Thay vào \(y+1\Rightarrow\frac{2x-5}{y+1}=\frac{2x-5}{x}=2-\frac{5}{x}=\frac{1}{3}\Rightarrow\frac{5}{x}=\frac{5}{3}\Rightarrow x=3;y=2\)