Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
b, \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
a, => (-2)^x = -(2^2)^6.(2^3)^15
=> (-2)^x = -2^12.2^15 = -2^27 = (-2)^27
=> x = 27
b, Vì |x+5| và (3y-4)^2012 đều >= 0
=> |x+5|+(3y-4)^2012 >= 0
Dấu "=" xảy ra <=> x+5=0 và 3y-4=0 <=> x=-5 và y=4/3
c, => (2x-1)^2+|2y-x| = 12-5.2^2+8 = 0
Vì (2x-1)^2 và |2y-x| đều >= 0
=> (2x-1)^2+|2y-x| >= 0
Dấu "=" xảy ra <=> 2x-1=0 và 2y-x=0 <=> x=1/2 và y=1/4
Tk mk nha
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
Bài 3:
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}3x+2>0\\\dfrac{2}{3}x-5< 0\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< \dfrac{15}{2}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x+2=0\\\dfrac{2}{5}x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{3}{4}=-2\\\dfrac{2}{5}x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=6:\dfrac{2}{5}=15\end{matrix}\right.\)
=> \(x-5=0\) và \(y^2-4=0\)
. \(x-5=0\Rightarrow x=5\) .\(y^2-4=0\Rightarrow y^2=4\Rightarrow y^2=2^2\Rightarrow y=2hoặc-2\)
Ta có :
\(\left\{{}\begin{matrix}\left(x+1,5\right)^8\ge0\\\left(2,7-y\right)^{12}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1,5\right)^8+\left(2,7-y\right)^{12}\ge0\)
Mà \(\left(x+1,5\right)^8+\left(2,7-y\right)^{12}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1,5\right)^8=0\\\left(2,7-y\right)^{12}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
Vậy...
Cô trả lời giúp em nhiều câu hỏi quá!!!Cảm ơn ạ!