K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

x/8=1/y<=>xy=1.8=8(nhân chéo)

=>x,y E Ư(8)

do đó

+)x=1=>y=8

+)x=8=>y=1

+)x=2=>y=4

+)x=4=>y=2

+)x=-1=>y=-8

+)x=-8=>y=-1

+)x=-2=>y=-4

+)x=-4=>y=-2

vậy ....

1 tháng 2 2016

đề có bấy nhiu thui hả

12 tháng 7 2017

Ta có \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{b}{4}=\frac{a}{\frac{8}{3}}=\frac{c}{5}\)

 Áp dụng  tính  chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{\frac{8}{3}}=\frac{b}{4}=\frac{-c}{-5}\Rightarrow\frac{a}{\frac{8}{3}}=\frac{a+b-c}{\frac{8}{3}+4-5}=\frac{10}{\frac{5}{3}}=6\)

\(\Rightarrow a=\frac{6.8}{3}=16;b=6.4=24;c=6.5=30\)

Vậy \(a=16;b=24;c=30\) 

12 tháng 7 2017

a/2 = b/3 => a/8 = b/12 (1)

b/4 = c/5 => b/12 = c/15 (2)

Từ (1) và (2) suy ra a/8 = b/12 = c/15

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

.............

Đến đây dễ rồi tự làm tiếp nhé :v

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

10 tháng 12 2015

a. Theo t/c dãy tỉ số = nhau:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)

=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)

Vậy x=12; y=30.

b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)

=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)

=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)

+) x-0,25=2,5

=> x=2,5+0,25

=> x=2,75

+) x-0,25=-2,5

=> x=-2,5+0,25

=> x=-2,25

Vậy x \(\in\){-2,25; 2,75}.

c. y=kx

=> -17=k.8

=> k=-17/8

Vậy hệ số tỉ lệ là -17/8.

10 tháng 12 2015

a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)

=> x=12   ;   y = 30

b)  \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)

=> x-0,25 = 2,5    hoac:  -2,5

=> x = 2,75      hoac x= -2,25

Vay: x la { 2,75  ;   -2,25 }

c) Ti le gi vay ban.

Neu thuan thi he so ti le la: \(-\frac{17}{8}\)

Neu nghich thi he so ti le la : -136

\(x+y-y-z+z+x=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow2x=\frac{5}{12}\)

\(\Rightarrow x=\frac{5}{12}:2\)

\(\Rightarrow x=\frac{5}{24}\)

Có x rồi bạn thế vào => ra được y rồi thế y vòa => được z

13 tháng 3 2019

Có : \(\left(x-\frac{1}{x}\right)^2\ge0\)

\(\Leftrightarrow x^2-2+\frac{1}{x^2}\ge0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}\ge2\)

C/m tt \(y^2+\frac{1}{y^2}\ge2\)

Cộng lại ta được \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge4\)

Dấu "=" khi \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

24 tháng 7 2017

Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)

Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)

\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)

b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)

Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)

Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)

Vậy .....

24 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)

đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

ta có : \(xy=2k\cdot5k=10k^2=90\)

\(\Rightarrow k^2=90:10=9\)

\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)

TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)

TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)

2 tháng 10 2017

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)

Vậy, ta lại có:

\(\dfrac{x}{3}=2\)\(\Rightarrow\) x= 3.2=6

\(\dfrac{y}{5}=2\Rightarrow\) y= 2.5=10

Vậy x-= 6 và y=10

Tick mk nha bn!

2 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)

\(\Leftrightarrow\dfrac{x}{3}=2\Rightarrow x=3.2=6\)

\(\Leftrightarrow\dfrac{y}{5}=2\Rightarrow y=5.2=10\)

Vậy x = 6 ; y = 10.