Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x-3y=7y-6x
<=> 4x+6y-3y-7y=0
<=>10x-10y=0
<=>x-y=0
Ta có x-y=0 và 2x+3y=55
2x+3y=55
<=>2x-2y+5y=55
<=>2(x-y)+5y=55
<=>5y=55 (x-y=0=>2(x-y)=0)
<=> y=11
x-y=0
=>x=y=11
Câu tiếp theo bạn tự làm nha!!
Chúc bạn học tốt!
\(3x+2y=7y-3x\)
\(\Leftrightarrow3x+3x=7y-2y\)
\(\Leftrightarrow6x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}\)và \(x-y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{6}=\frac{x-y}{5-6}=\frac{10}{-1}=-10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-1\\\frac{y}{6}=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1.5=-5\\y=-1.6=-6\end{cases}}}\)
Vậy \(x=-5;y=-6\)
\(3x+2y=7y-3x\)
\(3x+3x=7y-2y\)
\(6x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{6}\)
TTheo t/c dãy tỉ số bằng nhau
\(\Rightarrow\frac{x}{5}=\frac{y}{6}=\frac{x-y}{5-6}=\frac{10}{-1}=-10\)
\(\Rightarrow x=-50;y=-60\)
Tương tự đến hết, kiểm tra lại hộ mk nhé !
\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)
Thay vào phương trình 1 ta có :
\(6\left(10+y\right)-5y=0\)
\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)
Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)
à mk xin lỗi d ko áp dụng đc
\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Làm nốt nhé !
a) 6x - 2y = 3y - 4x
=> 6x - 2y + (2y + 4x) = 3y - 4x + (2y + 4x) => 10x = 5y => 2x = y => \(\frac{x}{1}=\frac{y}{2}=\frac{x+y}{1+2}=\frac{99}{3}\) = 33 => x = 33 ; y = 66
b) 7x - 2y = 7y - 6x
=> 7x - 2y + (2y + 6x) = 7y - 6x + (2y + 6x) => 13x = 9y => \(\frac{x}{9}=\frac{y}{13}=\frac{2x}{18}=\frac{3y}{39}=\frac{2x+3y}{18+39}=\frac{20}{57}\)
=> \(x=\frac{60}{19};y=\frac{260}{57}\)
a) 6x - 2y = 3y - 4x
6x + 4x = 3y + 2y
10x = 5y
=> x/5 = y/10
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{10}=\frac{x+y}{5+10}=\frac{99}{15}=\frac{33}{5}\)
(đến đây tự làm)
b) 7x - 2y = 7y - 6x
7x + 6x = 7y + 2y
13x = 9y
=> x/9 = y/13
=> 2x/18 = 3y/39
Áp dụng t/c của dãy tỉ số bằng nhau :
(tự làm tiếp nha)
\(3x=2y;7y=5z\) va x-y+z=32
\(\Rightarrow3x=2y=\frac{x}{2}=\frac{y}{3}\)
\(\Rightarrow7y=5z=\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Suy ra : \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=3\Rightarrow z=3.21=63\)
3x=2y=>x/2=y/3=>x/10=y/15
7y=5z=>y/5=z/7=>y/15=z/21
=>x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
=>x=20;y=30;z=42
vậy x=20;y=30;z=42
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20