K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

y = 5

còn x = -1,541953143

đưa x về phân số dùm mk nha!!!

13 tháng 2 2020

mk cho bt kết quả r tự giải ik

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

21 tháng 7 2017

a, \(\left(2x+1\right)^2-2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2\)

\(=\left(2x+1-x+3\right)^2=\left(x+4\right)^2\)

b, \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)

c, \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)=\left(x+1\right)\left(y-z\right)\)

d, \(x^2-xy-8x+8y=\left(x^2-xy\right)-\left(8x-8y\right)\)

\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)

e, \(x^2+2xy+y^2-xz-yz=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y+z\right)\left(x+y\right)\)

f, \(25-4x^2-4xy-y^2=25-\left(4x^2+4xy+y^2\right)\)

\(=5^2-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)

21 tháng 7 2017

1,

a, (2x + 1- x + 3)2 = (x+4)2

b,\(x\left(y+z\right)+3\left(y+z\right)=\left(y+z\right)\left(x+3\right)\)

c, \(x\left(y-z\right)+\left(y-z\right)=\left(y-z\right)\left(x+1\right)\)

d,\(x\left(x-y\right)+8\left(y-x\right)\)=\(\left(x-y\right)\left(x-8\right)\)

e,\(\left(x+y\right)^2-z\left(x+y\right)\)=\(\left(x+y\right)\left(x+y-z\right)\)

f,\(25-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2\)

\(=\left(5+2x+y\right)\left(5-2x-y\right)\)

Chúc các bn hc tốtbanh

9 tháng 7 2017

a) x^2

10 tháng 7 2017

a) hình như phải là 2x^2 chứ

b)   \(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)     

     tách    2y^2 =y^2 +y^2    nha

c) \(z^2-6z+13+t^2+4t=\left(z^2-6z+9\right)+\left(t^2+4t+4\right)=\left(z-3\right)^2+\left(t+2\right)^2\)

tách 13 = 9+4 

d)\(4x^2+2z^2-4xz-2z+1=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)=\left(4x-z\right)^2+\left(z-1\right)^2\)

cũng tách 2z^2 = z^2 + z^2

22 tháng 6 2017

Bài 1:
a)    x2 + y2 - 2x + 10y + 26 = 0
<=> (x2 - 2x + 1) + (y2 + 10y + 25) = 0
<=> (x - 1)2 + (y + 5)2 = 0 (*)
Vì (x - 1)2 \(\ge\)0; (y + 5)2 \(\ge\)0
(*) <=> x - 1 = 0     hay       y + 5 = 0
    <=> x      = 1        I <=> y       = -5
b)    64x3 + 48x2 + 12x + 1 = 27
<=> 64x3 - 32x2 + 80x2 - 40x + 52x + 1 - 27 = 0
<=> 64x3 - 32x2 + 80x2 - 40x + 52x - 26 = 0
<=> 64x2(x - \(\frac{1}{2}\)) + 80x(x - \(\frac{1}{2}\)) + 52(x - \(\frac{1}{2}\)) = 0
<=> (x - \(\frac{1}{2}\))(64x2 + 80x + 52) = 0
<=> (x - \(\frac{1}{2}\))[(8x)2 + 2.8x.5 + 52 + 27) = 0
<=> (x - \(\frac{1}{2}\))[(8x + 5)2 + 27) = 0
<=> x - \(\frac{1}{2}\)= 0 (vì (8x + 5)2 + 27 > 0
<=> x            = \(\frac{1}{2}\)

Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29

22 tháng 6 2017

cảm ơn nha!

12 tháng 7 2017

       x2-4x+4=4x2-12x+9

\(\Leftrightarrow\)3x2-8x+5=0

\(\Leftrightarrow\)3x2-3x-5x+5=0

\(\Leftrightarrow\)3x(x-1)-5(x-1)=0

\(\Leftrightarrow\)(x-1)(3x-5)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)

b,x2-2x-25=0

\(\Leftrightarrow\)(x-1)2-26=0

\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)

2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4

b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017

mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory

12 tháng 7 2017

Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3 

13 tháng 7 2017

Bài 1: 

a)  \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)

\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)

VẬy tập nghiệm của phương trình là : S={11/3 ; 7}

b)   Nếu x^2 -2x  =25 thì lẻ lắm . Tớ nghĩ phải là :  x^2 -2x  = 24 

Bài 2 : 

a)  \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)  hay \(A\ge4\)

Vậy GTNN của A là 4  khi x = 1        ( hay x-1 =0 )

b)  \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)

Vì \(\left(2x-1\right)^2\ge0\)     và \(\left(y+1\right)^2\ge0\)   nên   \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)

HAy \(B\ge-2017\)    Vậy GTNN của B là -2017  khi x=1/2   và y =  -1

31 tháng 7 2017

1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)

\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)

\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)

\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

Đặt  \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)

\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)

Thay a , ta có :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)