Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
a) Ta có : 2x = 3y = 5z
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y-z}{15-10-6}=\frac{-33}{-1}=33\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}x=33.15=495\\y=33.10=330\\z=33.6=198\end{cases}}\)
b) Ta có 10x = 15y = 6z
=> \(\frac{10x}{30}=\frac{15y}{30}=\frac{6z}{30}\)
=> \(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}\)
=> \(\frac{10x}{30}=\frac{5y}{10}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{10x}{30}=\frac{5y}{10}=\frac{z}{5}=\frac{10x-5y+z}{30-10+5}=\frac{-33}{25}=-1.32\)
=> \(\hept{\begin{cases}x=-3,96\\y=-2,64\\z=-6,6\end{cases}}\)
c) Ta có \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
=> \(\hept{\begin{cases}x=\pm15\\y=\pm21\\z=\pm9\end{cases}}\)
Vì \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> x ; y ; z cùng dấu
=> Các cặp x;y;z thỏa mãn là (15;21;9) ; (-15;-21;-9)
a) \(\hept{\begin{cases}2x=3y=5z\\x-y-z=23\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x-y-z=23\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y-z}{\frac{1}{2}-\frac{1}{3}-\frac{1}{5}}=\frac{23}{-\frac{1}{30}}=-690\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-690\\\frac{y}{\frac{1}{3}}=-690\\\frac{z}{\frac{1}{5}}=-690\end{cases}}\Rightarrow\hept{\begin{cases}x=-345\\y=-230\\z=-138\end{cases}}\)
b) \(\hept{\begin{cases}10x=15y=6z\\10x-5y+z=-33\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{6}}\\10x-5y+z=-33\end{cases}}\Rightarrow\hept{\begin{cases}\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}\\10x-5y+z=-33\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{-33}{\frac{5}{6}}=-\frac{198}{5}\)
\(\hept{\begin{cases}\frac{10x}{1}=-\frac{198}{5}\\\frac{5y}{\frac{1}{3}}=-\frac{198}{5}\\\frac{z}{\frac{1}{6}}=-\frac{198}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{99}{25}\\y=-\frac{66}{25}\\z=-\frac{33}{5}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\\x^2+y^2-z^2=585\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\\x^2+y^2-z^2=585\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{5^2+7^2-3^2}=\frac{585}{65}=9\)
\(\hept{\begin{cases}\frac{x^2}{5^2}=9\\\frac{y^2}{7^2}=9\\\frac{z^2}{3^2}=9\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm15\\y=\pm21\\z=\pm9\end{cases}}\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)cùng dấu
=> ( x ; y ; z ) = ( 15 ; 21 ; 9 ) hoặc ( x ; y ; z ) = ( -15 ; -21 ; -9 )
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Đặt \(k=\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
=> \(x=5k\) ; \(y=7k\); \(z=3k\) (*)
Thay vào \(x^2+y^2+z^2=585\) ta có:
\(\left(5k\right)^2+\left(7k\right)^2+\left(3k\right)^2=585\)
\(\Leftrightarrow25k^2+49k^2+9k^2=585\)
\(\Leftrightarrow83k^2=585\)
\(\Leftrightarrow k^2=\frac{585}{83}\)
\(\Leftrightarrow k=\pm\sqrt{\frac{585}{83}}\)
Thay vào các biểu thức ở (*) ta tính được x, y, z