Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{x}{18}\)=\(\frac{y}{15}\)=\(\frac{x-y}{18-15}\)=\(\frac{_{-30}}{3}\)=-10
x=-10.18=-180
y=-10.15=-150
b) \(7x=9y\) và \(10x-8y=68\)
Có: \(7x=9y\Leftrightarrow\frac{x}{9}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{10x-8y}{90-56}=\frac{68}{34}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.9\\y=2.7\end{cases}}\Rightarrow\hept{\begin{cases}x=18\\y=14\end{cases}}\)
b) Ta có: 7x = 9y => x = 9/7y
Lại có: 10x - 8y = 68
=> 10.9/7.y - 8y = 68
=> 90/7.y - 56/7.y = 68
=> 34/7.y = 68
=> y = 68 : 34/7 = 14
=> x = 9/7.14 = 18
c) Vì (x - 1/2)50 > hoặc = 0; (y + 1/3)40 > hoặc = 0
Mà (x - 1/2)50 + (y + 1/3)40 = 0
=> (x - 1/2)50 = 0; (y + 1/3)40 = 0
=> x - 1/2 = 0; y + 1/3 = 0
=> x = 1/2; y = -1/3
a, tự làm
b, Theo bài ra ta có : \(7x=9y\Leftrightarrow\frac{x}{9}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{10x-8y}{10.9-8.7}=\frac{68}{34}=2\)
\(x=18;y=14\)
c, \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}=0\)
Ta có : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\Leftrightarrow\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x;y\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{15}=\frac{x-y}{18-15}=\frac{-30}{3}=-10\)
=> x = -10.18 = -180 ; y = -10.15 = -150
b) Ta có : \(7x=9y\Rightarrow\frac{7x}{63}=\frac{9y}{63}\Rightarrow\frac{x}{9}=\frac{y}{7}\)
=> \(\frac{10x}{90}=\frac{8y}{56}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10x}{90}=\frac{8y}{56}=\frac{10x-8y}{90-56}=\frac{68}{34}=2\)
=> x = 18,y = 14
c) Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\)
=> \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Vậy:....
1. Tìm x,y biết
a):\(\frac{x}{9}=\frac{13}{6}\Rightarrow6x=13.9\Rightarrow6x=117\Rightarrow x=\frac{117}{6}=\frac{39}{2}\)
b)\(\frac{17}{x}=\frac{51}{57}\Rightarrow51x=17.57\Rightarrow51x=969\Rightarrow x=\frac{969}{51}=19\)
c)\(\frac{x+2}{3}=\frac{4}{9}\Rightarrow9\left(x+2\right)=3.4\Rightarrow9x+18=12\)
\(\Rightarrow9x=12-18\Rightarrow9x=-6\Rightarrow x=\frac{-6}{9}=\frac{-2}{3}\)
d)\(\frac{x+1}{5}=\frac{125}{\left(x+1\right)^2}\Rightarrow5.125=\left(x+1\right)\left(x+1\right)^2\)
\(\Rightarrow5^4=\left(x+1\right)^3\)
2.Lập tỉ lệ thức:
a) Từ 4 số trên, ta có đẳng thức sau: \(2.14=7.4\)
Vậy, các tỉ lệ thức lập được là: \(\frac{2}{7}=\frac{4}{14};\frac{7}{2}=\frac{14}{4};\frac{2}{4}=\frac{7}{14};\frac{4}{2}=\frac{14}{7}\)
b) Từ 4 số trên, ta có đẳng thức sau: \(4.12=6.8\)
Vậy, các tỉ lệ thức lập được là: \(\frac{4}{6}=\frac{8}{12};\frac{6}{4}=\frac{12}{8};\frac{4}{8}=\frac{6}{12};\frac{8}{4}=\frac{12}{6}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
Bài 1:
\(A=\frac{a+b}{b+c}.\)
Ta có:
\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)
\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)
\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)
Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)
Bài 2:
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow648+280=7x+9x\)
\(\Rightarrow928=16x\)
\(\Rightarrow x=928:16\)
\(\Rightarrow x=58\)
Vậy \(x=58.\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10.\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{6;-14\right\}.\)
Chúc bạn học tốt!
Bài 2:
a, \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow9.72-9.x=7.x-7.40\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow-9x-7x=-280-648\)
\(\Rightarrow-16x=-648\)
\(\Rightarrow x=58\)
Vậy \(x=58\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10