Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cùng đi một quãng đường AB, vận tốc của hai xe tỉ lệ nghịch với thời gian hai xe đi trên quãng đường đó. Do đó, tỉ số vận tốc của xe thứ nhất so với xe thứ hai bằng:
334:414=15:17.334:414=15:17.
Cùng đi một thời gian từ chỗ khởi hành đến chỗ gặp nhau, quãng đường hai xe đi được (gọi là s1;s2s1;s2) tỉ lệ thuận với vận tốc của hai xe. Do đó s1:s2=15:17s1:s2=15:17. Mặt khác s2−s1=20s2−s1=20
Ta có: s115=s217=s2−s117−15=202=10.s115=s217=s2−s117−15=202=10.
Vậy s1=150;s2=170.s1=150;s2=170. Quãng đường AB dài là 320 km.
Haizz.. Tự mình đăng rồi tự nình lại phải làm thế này
Gọi quãng đường xe thứ nhất và xe thứ 2 đi được từ chỗ xuất phát đến chỗ gặp nhau là x (km) và y(km) (x,y>0)
=> x-y =12
Theo bải ra ta có vận tốc và thời gian của một vật chuyển động đều trên cùng một quãng đường là hai đại lượng tỉ lệ nghịch
=> Tỉ số vận tốc của xe thứ nhất và xe thứ hai là \(\frac{v_1}{v_2}=\frac{7}{6}\)
Theo bài ra ta có quãng đường và vận tốc của 2 xe từ chỗ khởi hành đến chỗ gặp nhau là 2 đại lượng tỉ lệ thuận
=> \(\frac{x}{y}=\frac{v_1}{v_2}=\frac{7}{6}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{7}=\frac{y}{6}=\frac{x-y}{7-6}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=12\\\frac{y}{6}=12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=12.7=84\\y=12.6=720\end{cases}}\) ( thỏa mãn x,y >0)
=> Quãng đường AB dài 84+720=804 (km)
Vậy quãng đường AB dài 804 (km)
Học tốt
4h15'= 17/4h ; 3h45'=15/4h
Gọi quãng đg xe thứ nhất đi đc là s1 ; vận tốc là v1
-------------------------------hai--------------s2;------------------v2
=>s2-s1=20
vì vân tốc và thời gian là hai đại lượng tỉ lệ nghịch
=> v1/v2=t2/t1=15/4/17/4=15/7
vì quãng đường và vận tốc là hai đại lượng tỉ lệ thuận
=> s1/s2=v1/v2=15/7 => s1/15=s2/17
=>s2-s1/17-15=20/2=10
=>s1= 10*15=150
s2= 10*17= 170
vậy ....
Gọi vận tốc của xe ô tô thứ nhất, thứ 2 lần lượt là a; b (km/h; a;b > 0)
Gọi độ dài quãng đường AB là: S (km; S > 0)
Như vậy, a = S/12; b = S/14
Gọi quãng đường xe thứ nhất, thứ hai đi được đến khi 2 xe gặp nhau lần lượt là x;y (km; x;y > 0)
=> x + y = S
Vì thời gian 2 xe đi để gặp nhau như nhau nên vận tốc và quãng đường là 2 đại lượng tỉ lệ thuận
=> S/12 : S/14 = x/y = 14/12 = 7/6
=> x/7 = y/6
Áp dụng t/c của dãy tỉ số = nhau ta có:
x/7 = y/6 = x+y/7+6 = S/13 = 520/13 = 40
=> x = 40.7 = 280
Vậy quãng đường ô tô thứ nhất đi được đến khi gặp ô tô thứ 2 hay khoảng cách từ A đến nơi 2 ô tô gặp nhau là 280 km
dài quá, cần tiết kiệm t để thi toán trắc nghiệm đh sau này, " học là cho mk mà"