Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}+\dfrac{5}{6}\)
\(\dfrac{2}{3}x=\dfrac{25}{12}\)
\(x=\dfrac{25}{12}:\dfrac{2}{3}\)
=>\(x=\dfrac{25}{8}\)
a) \(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\) b) \(2\dfrac{1}{3}-\dfrac{4}{5}:x=0,2\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\) \(\dfrac{7}{3}-\dfrac{4}{5}:x=\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}-\dfrac{5}{6}\) \(\dfrac{4}{5}:x=\dfrac{7}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{30}{24}-\dfrac{20}{24}\) \(\dfrac{4}{5}:x=\dfrac{35}{15}-\dfrac{3}{15}\)
\(\dfrac{2}{3}x=\dfrac{5}{12}\) \(\dfrac{4}{5}:x=\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{2}{3}\) \(x=\dfrac{4}{5}:\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{8}{12}\) \(x=\dfrac{4}{5}.\dfrac{15}{32}\)
\(x=\dfrac{5}{12}.\dfrac{12}{8}=\dfrac{5}{8}\) \(x=\dfrac{4.15}{5.32}\)
\(x=\dfrac{1.3}{1.8}=\dfrac{3}{8}\)
d)\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\dfrac{-8}{27}\)
\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\left(\dfrac{-2}{3}\right)^3\)
\(\Rightarrow\dfrac{4}{3}-\dfrac{1}{4}x=\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=2\)
\(\Rightarrow x=2:\dfrac{1}{4}\)
\(\Rightarrow x=2.4=8\)
a) x.(\(\dfrac{6}{7}\)+\(\dfrac{5}{6}\))=\(\dfrac{3}{4}\)
x.\(\dfrac{71}{42}\)=\(\dfrac{3}{4}\)
x=\(\dfrac{3}{4}\):\(\dfrac{71}{42}\)
x=\(\dfrac{63}{142}\)
a.\(\dfrac{6}{7}x+\dfrac{5}{6}x=\dfrac{3}{4}\)
\(x.\left(\dfrac{6}{7}+\dfrac{5}{6}\right)=\dfrac{3}{4}\)
\(x.\dfrac{71}{42}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}:\dfrac{71}{42}\)
\(x=\dfrac{63}{142}\)
b\(\dfrac{5}{4}-\dfrac{3}{5}:x=1\dfrac{1}{3}\)
\(\dfrac{3}{5}:x=\dfrac{5}{4}-1\dfrac{1}{3}\)
\(\dfrac{3}{5}:x=\dfrac{-1}{12}\)
\(x=\dfrac{3}{5}:\dfrac{-1}{12}\)
\(x=\dfrac{-36}{5}\)
c. \(\left(\dfrac{4}{7}x-\dfrac{1}{3}\right):3\dfrac{1}{2}=0,5\)
\(\left(\dfrac{4}{7}x-\dfrac{1}{3}\right)=0,5:3\dfrac{1}{2}\)
\(\dfrac{4}{7}x-\dfrac{1}{3}=\dfrac{1}{7}\)
\(\dfrac{4}{7}x=\dfrac{1}{7}+\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{10}{21}\)
\(x=\dfrac{10}{21}:\dfrac{4}{7}\)
\(x=\dfrac{5}{6}\)
d.\(\dfrac{4}{5}-\dfrac{2}{3}x=1\dfrac{1}{4}+2,5x\)
\(\dfrac{4}{5}-\left(\dfrac{2}{3}x-2,5x\right)=1\dfrac{1}{4}\)
\(\dfrac{4}{5}-\dfrac{-11}{6}x=1\dfrac{1}{4}\)
\(\dfrac{-11}{6}x=\dfrac{4}{5}-1\dfrac{1}{4}\)
\(\dfrac{-11}{6}x=\dfrac{-9}{20}\)
\(x=\dfrac{-9}{20}:\dfrac{-11}{6}\)
\(x=\dfrac{27}{110}\)
có sai sót j xin bn thông cảm !
3) \(\left(x+\dfrac{1}{5}\right)^2\) + \(\dfrac{17}{25}\) = \(\dfrac{26}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{26}{25}\) - \(\dfrac{17}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{9}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{3}{5}.\dfrac{3}{5}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\left(\dfrac{3}{5}\right)^2\)
=> \(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)
=> \(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)
=> \(x\) = \(\dfrac{2}{5}\)
4) -1\(\dfrac{5}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-24}{27}\)
=> \(\dfrac{-32}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-32}{27}\) - \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{27}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\left(\dfrac{-2}{3}\right)^3\)
=> \(3x-\dfrac{7}{9}=\dfrac{-2}{3}\)
=> \(3x=\dfrac{-2}{3}+\dfrac{7}{9}\)
=> \(3x=\dfrac{1}{9}\)
=> \(x=\dfrac{1}{9}:3\)
=> \(x=\dfrac{1}{27}\)
a.\(\dfrac{-4}{5}-\left(\dfrac{2}{3}x+1\dfrac{1}{4}\right)=\dfrac{2}{7}\)
\(\left(\dfrac{2}{3}x+1\dfrac{1}{4}\right)=\dfrac{-4}{5}-\dfrac{2}{7}=\dfrac{-38}{35}\)
\(\dfrac{2}{3}x=\dfrac{-38}{35}-1\dfrac{1}{4}\)
\(\dfrac{2}{3}x=\dfrac{-327}{140}\Rightarrow x=\dfrac{-327}{140}:\dfrac{2}{3}=\dfrac{-981}{280}\)
Vậy \(x=\dfrac{-981}{280}\)
b. \(\dfrac{5}{6}+\left(\dfrac{3}{4}-\dfrac{1}{2}:x\right)=\dfrac{-2}{3}\)
\(\left(\dfrac{3}{4}-\dfrac{1}{2}:x\right)=\dfrac{-2}{3}-\dfrac{5}{6}=\dfrac{-3}{2}\)
\(\dfrac{1}{2}:x=\dfrac{3}{4}-\dfrac{-3}{2}\)
\(\dfrac{1}{2}:x=\dfrac{9}{4}\Rightarrow x=\dfrac{1}{2}:\dfrac{9}{4}=\dfrac{2}{9}\)
Vậy \(x=\dfrac{2}{9}\)
c. \(\left(\dfrac{4}{5}x-1\dfrac{1}{3}\right):\dfrac{3}{4}=0,7\)
\(\left(\dfrac{4}{5}x-1\dfrac{1}{3}\right)=0,7.\dfrac{3}{4}=\dfrac{21}{40}\)
\(\dfrac{4}{5}x=\dfrac{21}{40}+1\dfrac{1}{3}=\dfrac{223}{120}\)
\(\Rightarrow x=\dfrac{223}{120}:\dfrac{4}{5}=\dfrac{223}{96}\)
Vậy \(x=\dfrac{223}{96}\)
d. \(\dfrac{5}{6}-\dfrac{3}{4}x=1\dfrac{1}{3}+0,5x\)
\(0,5x+\dfrac{3}{4}x=\dfrac{5}{6}-1\dfrac{1}{3}\)
\(\dfrac{5}{4}x=\dfrac{-1}{2}\Rightarrow x=\dfrac{-1}{2}:\dfrac{5}{4}=\dfrac{-2}{5}\)
Vậy \(x=\dfrac{-2}{5}\)
a) \(\dfrac{1}{3}x-\dfrac{1}{2}=\dfrac{3}{4}x+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{3}{4}x=\dfrac{1}{2}+\dfrac{1}{15}\)
\(\Rightarrow\dfrac{4}{12}x-\dfrac{9}{12}x=\dfrac{15}{30}+\dfrac{2}{30}\)
\(\Rightarrow\dfrac{-5}{12}x=\dfrac{17}{30}\)
\(\Rightarrow x=\dfrac{-102}{75}\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\dfrac{64}{729}\)
\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(\Rightarrow x=\dfrac{2}{3}\)
a/ \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{2}x=\dfrac{29}{20}\)
\(\Leftrightarrow x=\dfrac{29}{10}\)
Vậy ...
b/ \(\left(4x-3\right)\left(\dfrac{5}{4}x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{8}{5}\end{matrix}\right.\)
Vậy .....
c/ \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\Leftrightarrow\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=-\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=-\dfrac{19}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-\dfrac{38}{21}\end{matrix}\right.\)
Vậy ......
d/ \(\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\dfrac{8}{125}\)
\(\Leftrightarrow\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Leftrightarrow\dfrac{3}{5}x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{9}{10}\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a. \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{4}\)
\(\dfrac{3}{6}x=\dfrac{5}{4}+\dfrac{1}{5}\)
\(\dfrac{3}{6}x=\dfrac{29}{20}\)
\(x=\dfrac{29}{20}:\dfrac{3}{6}\)
\(x=\dfrac{29}{10}\)
Vậy...
b. \(\left(4x-3\right).\left(\dfrac{5}{4}x+2\right)=0\)
\(\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-8}{5}\end{matrix}\right.\)
Vậy ...
c. \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=1,5+\dfrac{3}{4}\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{-9}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=\dfrac{-19}{12}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=\dfrac{-38}{21}\end{matrix}\right.\)
Vậy...
a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)
\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)
\(\Leftrightarrow8x=-\frac{5}{4}\)
\(\Leftrightarrow x=-\frac{5}{32}\)
c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(\Leftrightarrow x+1=2003\)
\(\Leftrightarrow x=2002\)
\(\dfrac{2\left(x+1\right)}{6}=\dfrac{3x}{6}\\ \Leftrightarrow2x+2=3x\\ \Leftrightarrow x=2\)
Mik k bn nha:))) và cảm ơn bn Minh:)))