Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(\Rightarrow\dfrac{M}{2}=\dfrac{6:2}{2.5}+...+\dfrac{6:2}{47.50}\)
\(=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\)
\(=\dfrac{1}{2}-\dfrac{1}{50}\)
\(=\dfrac{12}{25}\)
\(\Rightarrow M=\dfrac{12}{25}.2=\dfrac{24}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(\Rightarrow2K=\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{43.45}\)
\(=\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\)
\(=\dfrac{1}{9}-\dfrac{1}{45}\)
\(=\dfrac{4}{45}\)
\(\Rightarrow K=\dfrac{4}{45}:2=\dfrac{2}{45}\)
\(M=\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{47.50}\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{5}+\dfrac{6}{5}-\dfrac{6}{8}+\dfrac{6}{8}-\dfrac{6}{11}+...+\dfrac{6}{47}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{6}{2}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\left(\dfrac{150}{50}-\dfrac{6}{50}\right)\)
\(M=\dfrac{6}{3}.\dfrac{144}{50}\)
\(M=\dfrac{144}{25}\)
\(K=\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{43.45}\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{43}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{1}{9}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\left(\dfrac{5}{45}-\dfrac{1}{45}\right)\)
\(K=\dfrac{1}{2}.\dfrac{4}{45}\)
\(K=\dfrac{2}{45}\)
a)
<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305
b)
a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
308.1 = (x + 3).1
308 = x + 3
x = 308 - 3
x = 305
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Rightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
vậy \(x=305\)
Giải:
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{15}-\dfrac{1}{3\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3x+9}=\dfrac{1}{924}\)
\(\Leftrightarrow3x+9=924\)
\(\Leftrightarrow3x=915\)
\(\Leftrightarrow x=305\)
Vậy ...
Ta có : \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+....+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
= \(\dfrac{1}{3}\) . ( \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+....-\dfrac{1}{x+3}\)
=\(\dfrac{1}{3}\). ( \(\dfrac{1}{5}-\dfrac{1}{x+3}\)) = \(\dfrac{101}{1540}\)
=>\(\dfrac{1}{5}-\dfrac{1}{x+3}\) = \(\dfrac{303}{1540}\)
=> \(\dfrac{1}{x+3}\)= \(\dfrac{5}{1540}=\dfrac{1}{308}\)
=> x+3 = 308
=> x= 305
Vậy x= 305
Ta có : 1/ 5.8 + 1/ 8.11 + 1/ 11.14 + ... + 1/ x.(x+3) = 101/1540 .
⇒ 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/x - 1/ x+3 = 101/1540 .
⇒ 1/5 - 1/ x+3 = 101/1540 .
⇒ 1/5 - 101/1540 = 1/ x+3 .
⇒ 308/1540 - 101/1540 = 1/ x+3 .
⇒ 1/ x+3 = 207/1540 .
⇒ 1540 = ( x + 3 ).207 .
⇒ 1540 = 207x + 621 .
⇒ 1540 - 621 = 207x .
⇒ 207x = 1119 .
⇒ x = 1119 : 207 .
⇒ Không có giá trị của x ( vì x ∈ Z ) .
Ta có: \(\dfrac{1}{3.3}\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\)\(=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Ta có:
\(\dfrac{1}{5\times8}+\dfrac{1}{8\times11}+\dfrac{1}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}:\dfrac{1}{3}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
=> x + 3 = 308
x = 308 - 3
x = 305
Vậy x = 305
sửa đề: phải là 14 chứ sao lại là 13 nhỉ?=))
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\) \(\left(x\ne0;x\ne-3\right)\)
\(\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}\right)\cdot3=\dfrac{101}{1540}\cdot3\)
\(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{308\left(x+3\right)}{1540\left(x+3\right)}-\dfrac{1540}{1540\left(x+3\right)}=\dfrac{303\left(x+3\right)}{1540\left(x+3\right)}\)
suyy ra
`308x+924-1540=303x+909`
`5x=1525`
`x=305(tm)`
giải giúp mh vs:<