Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
1) \(x-\left|1\frac{1}{6}\right|=\frac{5}{21}\)
\(\Rightarrow x-\frac{5}{21}=\left|1\frac{1}{6}\right|\)
\(\Rightarrow x-\frac{5}{21}=\frac{7}{6}\)
\(\Rightarrow x=\frac{7}{6}+\frac{5}{21}=\frac{49}{42}+\frac{10}{42}=\frac{59}{42}\)
2) \(x+\left|-1\frac{2}{3}\right|=\left|-\frac{3}{4}\right|\)
\(\Rightarrow x+\left|-1\frac{2}{3}\right|=\frac{3}{4}\)
\(\Rightarrow x-\frac{3}{4}=-\left|-1\frac{2}{3}\right|\)
\(\Rightarrow x-\frac{3}{4}=-1\frac{2}{3}\)
\(\Rightarrow x-\frac{3}{4}=-\frac{5}{3}\)
\(\Rightarrow x=-\frac{5}{3}+\frac{3}{4}=-\frac{11}{12}\)
3) \(\left|x-\frac{1}{3}\right|=\frac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{5}{2}\\x-\frac{1}{3}=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}+\frac{1}{3}=\frac{17}{6}\\x=-\frac{5}{2}+\frac{1}{3}=-\frac{13}{6}\end{matrix}\right.\)
4) \(\left|x+\frac{2}{3}\right|=0\)
\(\Rightarrow x+\frac{2}{3}=0\)
\(\Rightarrow x=0-\frac{2}{3}=-\frac{2}{3}\)
5) \(\left|x+2\right|=\frac{1}{3}-\frac{1}{5}\)
\(\Rightarrow\left|x+2\right|=\frac{2}{15}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\frac{2}{15}\\x+2=-\frac{2}{15}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{15}-2=-\frac{28}{15}\\x=-\frac{2}{15}-2=-\frac{32}{15}\end{matrix}\right.\)
6) \(\left|x-4\right|=\frac{1}{5}-\left(\frac{1}{2}-\frac{5}{4}\right)\)
\(\Rightarrow\left|x-4\right|=\frac{19}{20}\)
\(\Rightarrow\left[{}\begin{matrix}x-4=\frac{19}{20}\\x-4=-\frac{19}{20}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{19}{20}+4=\frac{99}{20}\\x=-\frac{19}{20}+4=\frac{61}{20}\end{matrix}\right.\)
7) \(\left|x-\frac{5}{4}\right|=-\frac{1}{3}\)
Vì \(\left|x-\frac{5}{4}\right|\ge0\)
=> Không có giá trị x thỏa mãn với điều kiện trên
a) \(x^3-\frac{4}{25}x=0\)
\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)
<=> x = 0
Xét 2 trường hợp:
\(\Leftrightarrow x+\frac{2}{5}=0\)
\(x=0-\frac{2}{5}\)
\(x=-\frac{2}{5}\)
\(\Leftrightarrow x-\frac{2}{5}=0\)
\(x=0+\frac{2}{5}\)
\(x=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)
b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)
\(=\frac{13}{40}:\frac{4}{3}\)
\(=\frac{39}{120}=\frac{13}{40}\)
c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)
\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)
\(=-\frac{5}{2}-1\)
\(=-\frac{7}{2}\)
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
a)\(\frac{5}{6}-x=-\frac{7}{12}+\frac{2}{3}\)
\(\frac{5}{6}-x=\frac{1}{12}\)
\(x=\frac{5}{6}-\frac{1}{12}\)
\(\Rightarrow x=\frac{3}{4}\)
b)\(\left(2,4x-36\right):1\frac{5}{7}=-14\)
\(\left(2,4x-36\right)=-24\)
\(2,4x=12\)
\(\Rightarrow x=5\)
c)\(\left(3\frac{1}{2}+2x\right).3\frac{2}{3}=5\frac{1}{3}\)
\(3\frac{1}{2}+2x=\frac{16}{11}\)
\(2x=-\frac{45}{22}\)
\(x=-\frac{45}{44}\)
d)\(\frac{5}{6}-\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{3}{8}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{11}{24}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{11}{24}\\\frac{1}{2}x-\frac{1}{3}=-\frac{11}{24}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{19}{12}\\x=-\frac{1}{4}\end{cases}}\)
e)\(\left|\frac{1}{4}-2x\right|-\frac{3}{4}=0\)
\(\left|\frac{1}{4}-2x\right|=\frac{3}{4}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{4}-2x=\frac{3}{4}\\\frac{1}{4}-2x=-\frac{3}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{4}\\x=\frac{1}{2}\end{cases}}\)
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
giỏi ghê!!!