K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

/ x + 2 / > 7 

Th1 : \(x+2\ge0=>x\ge-2\)

PT trở thành :

 \(x+2>7\)

\(=>x>5\)

TH2 : \(x+2< 0=>x< -2\)

Pt trở thành :

 \(-x-2>7\)

\(=>-x=9=>x>-9\)

b) Th1 : \(x-1\ge0=>x\ge1\)

Ta có : \(x-1< 3=>x< 4\)

Th2 : \(x-1< 0=>x< 1\)

Ta có : \(-x+1< 3=>-x< 2=>x< -2\)

9 tháng 2 2016

theo cách khác hổng được hả

 

7 tháng 1 2019

tim x /x/-/x-5/=7

7 tháng 1 2019

Bạn viết gì vậy vũ trí hiếu

16 tháng 9 2020

a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)

   + \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)

   + \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)

Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)

16 tháng 9 2020

b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)

   + \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )

    + \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)

Vậy \(-2< x< -\frac{2}{3}\)

22 tháng 7 2018

a) |2x-3|+x=21

|2x-3|=21-x

\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)

TH1: 2x-3=21-x

2x-x=21+3

x=24

TH2: 2x-3=-(21-x)

2x-3 = -21+x

2x-x=-21+3

x=-18

Vậy x \(\varepsilon\){-18;24}

20 tháng 7 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)

Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)

=> \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .

\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn 

20 tháng 7 2017

a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu 

Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)

=> -1 < x < 2

Vậy -1 < x < 2

b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu

Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy x>2 hoặc x < \(\frac{2}{3}\)

16 tháng 8 2016

x<y suy ra a/m<b/m suy ra a<b (vì m<0)

mà a<b suy ra a+b < b+b

suy ra a+b<2b

suy ra a+b/2 <b

suy ra a+b/2m <b/m

suy ra a+b/2m< y

Suy ra z<y   (1)

Mặt khác a<b suy ra a+a <a+b

suy ra 2a <a+b

suy ra 2a/m <a+b/ m

suy ra a/m < a+b/2m

suy ra x<z    (2)

Từ (1) và (2)

suy ra x<z<y