K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

a, \(\frac{1}{\left(2x-3\right)^2}=9\Leftrightarrow\left(\frac{1}{2x-3}\right)^2=3^2\Leftrightarrow\frac{1}{2x-3}=3\Leftrightarrow1=6x-9\Leftrightarrow x=\frac{5}{3}\)

b, \(\frac{1}{\left(x-1\right)^3}=-\frac{1}{27}\Leftrightarrow\left(\frac{1}{x-1}\right)^3=\left(\frac{-1}{3}\right)^3\Leftrightarrow\frac{1}{x-1}=\frac{1}{-3}\Leftrightarrow x-1=-3\Leftrightarrow x=-2\)

c, \(\left(x-1\right)^2=\left(2x-5\right)^2\Leftrightarrow\orbr{\begin{cases}x-1=2x-5\\x-1=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}}\)

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)

\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)

\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)

\(9x-10=0\)

hay 9x=10

\(x=\frac{10}{9}\)

Vậy: \(x=\frac{10}{9}\)

c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)

\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)

\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)

\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)

\(6x-3-5x+10-3x-21=0\)

\(-2x-14=0\)

\(-2x=14\)

hay x=-7

Vậy: x=-7

d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)

\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

\(6x-18+7x-35-13x-4=0\)

\(-21\ne0\)

Vậy: x∈∅

e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)

\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)

\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)

\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)

\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)

\(-12x+96=0\)

\(-12x=-96\)

hay x=8

Vậy: x=8

26 tháng 11 2017

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

27 tháng 11 2017

câu f ,g đâu

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
1 tháng 3 2020

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)

\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)

2 tháng 3 2020

f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\left(x^2-2\right)\)

\(=x^2+1-x^2+2\)

\(=3\)

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888