Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+1+3\sqrt{x}-3-\left(6x-10\sqrt{x}+4\right)}{x-1}\)
\(=\frac{x+1+3\sqrt{x}-3-6x+10\sqrt{x}-4}{x-1}=\frac{-5x+13x-6}{x-1}\)
b) \(P< \frac{1}{2}\Leftrightarrow\frac{-5x+13x-6}{x-1}< \frac{1}{2}\Leftrightarrow2\left(-5x+13x-6\right)< x-1\)
\(\Leftrightarrow-10x+26x-12< x-1\)
\(\Leftrightarrow15x< 11\Leftrightarrow x< \frac{11}{15}\)
Vậy để P < 1/2 khi x < 11/15
P/s: Không biết đúng hay sai, mong các anh chị chiếu cố
a) \(ĐKXĐ:x\ge-1\)
\(\sqrt{x+1}=2\)\(\Rightarrow\left(\sqrt{x+1}\right)^2=4\)
\(\Rightarrow x+1=4\)\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy \(x=3\)
b) \(ĐKXĐ:x\ge2\)
\(2\sqrt{x-2}< 6\)\(\Leftrightarrow\sqrt{x-2}< 3\)
Vì \(\sqrt{x-2}\ge0\); \(3>0\)
\(\Rightarrow\left(\sqrt{x-2}\right)^2< 9\)\(\Leftrightarrow x-2< 9\)
\(\Leftrightarrow x< 11\)
Kết hợp với ĐKXĐ \(\Rightarrow2\le x< 11\)
Vậy \(2\le x< 11\)
c) \(ĐKXĐ:x\ge4\)
\(\sqrt{x^2-16}=-\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x^2-16}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}.\left(\sqrt{x+4}+1\right)=0\)
Vì \(\sqrt{x+4}>0\)\(\Rightarrow\sqrt{x+4}+1>0\)
\(\Rightarrow\sqrt{x-4}=0\)\(\Leftrightarrow x-4=0\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
Ukm
It's very hard
l can't do it
Sorry!
a)\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-4}\left(ĐKXĐ:x\ne4;x\ge0\right)\)
\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\left(x-4\right)\)
\(=2\sqrt{x}\)
b)Tại A=6 ta có:\(2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Rightarrow x=9\)
c)Tại A<4 ta đc:\(2\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Rightarrow x< 4\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
ĐK ; \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
a, \(Q=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x-8\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-7\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-7}{\sqrt{x}+1}\)
b. \(Q< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-7}{\sqrt{x}+1}-\frac{1}{2}< 0\Rightarrow\frac{\sqrt{x}-15}{2\left(\sqrt{x}+1\right)}< 0\Rightarrow\sqrt{x}-15< 0\)
\(\Rightarrow0\le x< 225\)và \(x\ne4\)
c. \(Q=\frac{\sqrt{x}-7}{\sqrt{x}+1}=1-\frac{8}{\sqrt{x}+1}\)
Ta thấy \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{-8}{\sqrt{x}+1}\ge-8\Rightarrow1-\frac{8}{\sqrt{x}+1}\ge-7\)
\(\Rightarrow Q\ge-7\)
Vậy \(MinQ=-7\). Dấu bằng xảy ra \(\Rightarrow x=0\)
a) Ta có: \(\sqrt{x}-1=6\)
\(\Leftrightarrow\sqrt{x}=7\)
hay x=49
Vậy: x=49
b) Ta có: \(\sqrt{x}< 4\)
nên x<16
Vậy: \(0\le x< 16\)