Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
\(\left(3\frac{1}{2}+2x\right).2\frac{2}{3}=5\frac{1}{3}\)
<=>\(\left(\frac{7}{2}+2x\right).\frac{8}{3}=\frac{16}{3}\)
<=>\(\frac{28}{3}+\frac{16x}{3}=\frac{16}{3}\)
<=>\(\frac{16x}{3}=\frac{-2}{3}\)
<=>\(16x=-2\)
<=>\(x=\frac{-1}{8}\)
vậy \(x=\frac{-1}{8}\)
b,\(\left|2x+3\right|=5\)
xét x<0,ta co: \(\left|2x+3\right|=5\)<=> \(-2x+3=5\)<=>\(-2x=2\)<=>\(x=-1\)(loại)
xét x>0,ta co:\(\left|2x+3\right|=5\)<=>\(2x+3=5\)<=>\(2x=2\)<=>\(x=1\)
c,\(\frac{x-2}{4}=\frac{5+x}{3}\)
<=>\(\frac{3x-6}{12}=\frac{20+4x}{12}\)
=>\(3x-6=20+4x\)
<=>\(3x-6-20-4x=0\)
<=>\(-x-26=0\)
<=>\(-x=26\)
<=>\(x=-26\)
kl:.......
Ta có : \(\frac{x-1}{2}=\frac{x+1}{3}\)
<=> \(3\left(x-1\right)=2\left(x+1\right)\)
<=> \(3x-3=2x+2\)
<=> \(3x-2x=2+3\)
<=> x = 5
a, \(\frac{x-1}{2}=\frac{x+1}{3}\)
=> (x-1)3 = 2(x+1)
=> 3x - 3 = 2x + 2
=> 3x - 2x = 2 + 3
=> x = 5
b, \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\) (ĐPCM)
\(a,5\frac{4}{7}:x=13\Leftrightarrow x=\frac{39}{7}:13\Leftrightarrow x=\frac{39}{7}.\frac{1}{13}=\frac{3}{7}\)
\(b,\left(2,8x-32\right):\frac{2}{3}=-90\)
\(\Leftrightarrow2,8x-32=-90.\frac{2}{3}=-60\)
\(\Leftrightarrow2,8x=-60+32=-28\)
\(\Leftrightarrow x=\frac{-28}{2,8}=-10\)
d, \(7x=3,2+3x\Leftrightarrow7x-3x=3,2\Leftrightarrow4x=3,2\Leftrightarrow x=3,2:4=3,2.\frac{1}{4}=\frac{4}{5}\)
Câu c bị sai đề :\(\frac{19}{10}-1-\frac{2}{5}=\frac{1}{2}\ne1\)bạn nha.
mình lộn \(\left(\frac{19}{10}-1-\frac{2}{5}\right)+\frac{4}{5}=\frac{13}{10}\ne1\)ms đúng nha
a) \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)
B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)
BÀI 2:
A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)
\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)
\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)
\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)
\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)
ngoặc 1 có 99 số hạng x
\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)
\(\Leftrightarrow99x-3.\frac{99}{100}=1\)
\(\Leftrightarrow99x=1+\frac{3.99}{100}\)
\(\Leftrightarrow99x=\frac{397}{100}\)
\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)và 1
gọi
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)
VÌ \(\frac{2019}{2020}< 1\Rightarrow A< 1\)
VẬY \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}< 1\)
1. a) P = 4 - ( x - 2 )32
( x - 2 )32 ≥ 0 ∀ x => - ( x - 2 )32 ≤ 0 ∀ x
=> 4 - ( x - 2 )32 ≤ 4 ∀ x
Dấu bằng xảy ra <=> x - 2 = 0 => x = 2
Vậy PMax = 4 khi x = 2
b) Q = 20 - | 3 - x |
| 3 - x | ≥ 0 ∀ x => - | 3 - x | ≤ 0 ∀ x
=> 20 - | 3 - x | ≤ 20 ∀ x
Dấu bằng xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
c) C = \(\frac{5}{\left(x-3\right)^2+1}\)
Để C có GTLN => ( x - 3 )2 + 1 nhỏ nhất dương
=> ( x - 3 )2 + 1 = 1
=> ( x - 3 )2 = 0
=> x - 3 = 0
=> x = 3
=> CMax = \(\frac{5}{\left(3-3\right)^2+1}=\frac{5}{1}=5\)khi x = 3
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)