Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.tìm gtnn
A=x2+9x+56
B=x2-2x+15
C=9x2-12x
2.tìm gtln
D=-9x2+x
E=-x2+3x-5
F=-16x2-5x
Giúp mjk vs mn ơi:33
\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)
Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)
Vậy minA = 143/4 <=> x = - 9/2
\(B=x^2-2x+15=\left(x-1\right)^2+14\)
Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minB = 14 <=> x = 1
\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)
Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)
Vậy minC = - 4 <=> x = 2/3
Bài 1.
A = x2 + 9x + 56
= ( x2 + 9x + 81/4 ) + 143/4
= ( x + 9/2 )2 + 143/4
( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 143/4 <=> x = -9/2
B = x2 - 2x + 15
= ( x2 - 2x + 1 ) + 14
= ( x - 1 )2 + 14
( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 14 <=> x = 1
C = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4
9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> MinC = -4 <=> x = 2/3
Bài 2.
D = -9x2 + x
= -9( x2 - 1/9x + 1/324 ) + 1/36
= -9( x - 1/18 )2 + 1/36
-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36
Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18
=> MaxD = 1/36 <=> x = 1/18
E = -x2 + 3x - 5
= -( x2 - 3x + 9/4 ) - 11/4
= -( x - 3/2 )2 - 11/4
-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxE = -11/4 <=> x = 3/2
F = -16x2 - 5x
= -16( x2 + 5/16x + 25/1024 ) + 25/64
= -16( x + 5/32 )2 + 25/64
-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64
Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32
=> MaxF = 25/64 <=> x = -5/32
\(\left(27x^3+1\right):\left(9x^2-3x+1\right)=\left(3x+1\right)\left(9x^2-3x+1\right):\left(9x^2-3x+1\right)=3x+1\)
\(\left(x^3+3x^2+3x+1\right):\left(x+1\right)=\left(x+1\right)^3:\left(x+1\right)=\left(x+1\right)^2\)
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
Bài 1:
a: =>9x^2-6x+1=9x^2-2x
=>-4x=-1
=>x=1/4
b: \(\Leftrightarrow x^2+6x+9-x^2-2x-3=14\)
=>4x+6=14
=>4x=8
=>x=2
Bài 2:
a: \(=2x^2-6x+x-3-x^2+5x+3x=x^2+3x-3\)
b: =x^3-6x^2+12x-8-x^3+6x^2
=12x-8
\(\Rightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Rightarrow3x^2\left(x^2+3\right)-9x\left(x^2+3\right)=0\)
\(\Rightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(3x^4-9x^3=-9x^2+27x\)
\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)
\(\Leftrightarrow3x\left(x^2+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-3\left(L\right)\\x=3\end{matrix}\right.\)
Vậy PT có nghiệm là \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
a) <=> \(3x^4-9x^3+9x^2-27x=0\)
<=>\(3x\left(x^3-3x^2+3x-9\right)=0\)
<=>\(3x\left(x-3\right)\left(x^2+3\right)\)=0
<=>x=0 hoặc x=3
b) \(\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
<=>\(\left(x+3\right)\left(x^2-4x+5\right)=0\)
<=>\(\left(x+3\right)\left(\left(x-2\right)^2+1\right)=0\)
=> x=-3
a) 3x4 - 9x3 = -9x2 + 27x
3x4 - 9x3 + 9x2 - 27x = 0
3x(x3 - 3x2 + 3x - 9) = 0
3x[x2(x - 3) + 3(x - 3)] = 0
3x(x - 3)(x2 + 3) = 0
vì x2 + 3 > 0 nên:
3x = 0 hoặc x - 3 = 0
x = 0 : 3 x = 0 + 3
x = 0 x = 3
=> x = 0 hoặc x = 3
b) (x + 3)(x2 - 3x + 5) = x2 + 3x
x3 - 3x2 + 5x + 3x2 - 9x = x2 + 3x
x3 - 4x + 15 = x2 + 3x
x3 - 4x + 15 - x2 - 3x = 0
x3 - 7x + 15 - x2 = 0
(x2 - 4x + 5)(x + 3) = 0
vì x2 - 4x + 5 > 0 nên
x + 3 = 0
=> x = -3