Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Ko chép lại đề)
\(a.\Rightarrow\orbr{\begin{cases}3x+5=0\\4-3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)
\(b.\left(3x-2\right)\left(x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=7\end{cases}}\)
\(c.7x^2=28\)
\(x^2=4\)
\(x^2=2^2\)
\(x=\pm2\)
\(d.\left(2x+1\right)\left(1+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\1+x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}\)
a)\(\left(3x+5\right)\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+5=0\\4-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{4}{3}\end{cases}}}\)
b)\(3x\left(x-7\right)-2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\3x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=\frac{2}{3}\end{cases}}}\)
c) \(7x^2-28=0\)
\(\Leftrightarrow7x^2=28\)
\(\Leftrightarrow7x^2=7.4\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
d)\(\left(2x+1\right)+x\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\1+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}}\)
#H
\(a,\left(2x+1\right)\left(x^2+2\right)=0\)
\(\left[{}\begin{matrix}2x=-1\\x^2=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(b,\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(6-2x=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(c,\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=-\frac{4}{3}\end{matrix}\right.\)
\(d,\left(x^2+4\right)\left(7x-3\right)=0\)
\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x^2=-4\\7x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\pm2\left(voli\right)\\x=\frac{3}{7}\end{matrix}\right.\)
\(e,\left(8x-4\right)=\left(x^2+x+2\right)\)
\(8x-4=x^2+x+2\)
\(8x-4-x^2-x-2=0\)
\(7x-6-x^2=0\)
\(\left(x-6\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
\(f,\left(2x-1\right)\left(3x+2\right)\left(5-x\right)\)
đề thiếu hay là rút gọn vậy bn
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Rightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)
làm nốt(phương trình ước số)
a) \(7x-10=5x-6\)
\(7x-5x=-6+10\)
\(2x=4\)
\(x=2\)
b) \(3x\left(x-2\right)+x-2=0\)
\(\left(x-2\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{3}\end{cases}}\)
c) \(2x^2+7x-4=0\)
\(2x^2-x+8x-4=0\)
\(x\left(2x-1\right)+2\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)
7x-10=5x-6<=>7x-5x=-6+10<=>2x=4=>x=2
3x(x-2)+x-2=0<=>(x-2)(3x+1)=0<=>x-2=0=>x=2 HAY 3x+1=0=>x=-1/3
2x2+7x-4=0.
Câu cuối xem có lộn đề không nha bạn ơi!!!
a, \(x^4-5x^3+2x^2+10x+2=0\)
\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)
\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)
Vì \(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)
Các câu còn lại tương tự!
Chúc bạn học tốt!!!
a,A= x(x3-5x2+7x-3)
=x(x3-3x2-2x2+6x+x-3)
=x(x-3)(x2-2x+1)
=x(x-3)(x-1)2
vi (x-1)2>=0
=>Để A <0 thì x(x-3)<0
TH1:x>0 va x-3<0
x>0 va x<3
=> 0<x<3
TH2 :x<0 va x-3>0
x<0 và x>3( loại vỉ 2 dk trái ngược nhau )
Vay 0<x<3 thi thoa man....... .........
Phần b tương tự
Bài 1.
a) x2 + 7x +12 = 0
Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)
Phương trình có 2 nghiệm phân biệt:
x1 = \(\frac{-7+1}{2}=-3\)
x2= \(\frac{-7-1}{2}=-4\)
Bài 1
b) 2x2 + 5x - 3=0
Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)
Phương tình có 2 nghiệm phân biệt:
x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)
x2 = \(\frac{-5-7}{2.2}-3\)
c) 3x2 +10x+7 = 0
Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)
Phương tình có 2 nghiệm phân biệt:
x1= \(\frac{-10+4}{2.3}=-1\)
x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)
b. x2-7x+6=0
=>x2-x-6x+6=0
=> x(x-1)-6(x-1)=0
=>(x-6)(x-1)=0
=>x-6=0 hoặc x-1=0
=>x=6 hoặc x=1
a) \(\left(3x+4\right)\left(4-x\right)=0\Rightarrow\orbr{\begin{cases}3x+4=0\\4-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=\left(-4\right)\Rightarrow x=\frac{-4}{3}\\x=4\end{cases}}\)
\(\Rightarrow x=\left\{\frac{-4}{3};4\right\}\)
b) \(\Rightarrow\orbr{\begin{cases}3\left(x-4\right)=0\\2\left(x-4\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-4=0\end{cases}}\Rightarrow x=4\)
c) => 7x2=0+28
=> x2=28:7
=> x2=4
=> x2=22= (-2)2
=> x={-2;2}