K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

7 tháng 3 2021

Ta có x = 2020

=> x + 1 = 2021

A = x2021 - 2021x2020 + .... + 2021x - 2021

= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)

= x2021 - x2021 - x2020 + .... + x2 + x - x + 1

= 1

Vậy A = 1

7 tháng 3 2021

Ta có : \(x=2020\Rightarrow x+1=2021\)

\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)

= x2021 - x2021 - x2020  + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x+ x - 2021 = x - 2021 

mà x = 2020 hay 2020 - 2021 = -1 

Vậy với x = 2020 thì A = -1

23 tháng 7 2021

Khi x = 2021

=> 2022 = x + 1

Khi đó E = x10 - 2022x9 + 2022x8 - ... + 2022x2 - 2022x + 2022

= x10 - (x + 1)x9 + (x + 1)x8 - .... + (x + 1)x2 - (x + 1)x + (x + 1) 

= x10 - x10 - x9 + x9 + x8 - ... + x3 + x2 - x2 - x + x + 1

= 1 

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

12 tháng 12 2019

a)2x.(3x+5)-x.(6x-1)=33

=>\(6x^2+10x-6x^2+x=33\)

=>11x=33

=>x=3

12 tháng 12 2019

b)x(3x-1)+12x-4=0

=>x(3x-1)+4(3x-1)=0

=>(x-4)(3x-1)=0

=>x-4=0 hoặc 3x-1=0

+)x-4=0 +)3x-1=0

=>x=4 =>x=\(\frac{1}{3}\)

DD
9 tháng 3 2021

\(\hept{\begin{cases}x-1=a\\y-2=b\\z-3=c\end{cases}}\Rightarrow a+b+c=x+y+z-6=0\).

Ta có: 

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).

\(\Leftrightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)hoặc \(\hept{\begin{cases}b=-c\\a=0\end{cases}}\)hoặc \(\hept{\begin{cases}c=-a\\b=0\end{cases}}\).

Khi đó \(P=a^{2021}+b^{2021}+c^{2021}=0\).

1 tháng 7 2018

a/ \(25x^2-9=0\)

<=> \(\left(5x-3\right)\left(5x+3\right)=0\)

<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

<=> \(x^2+8x+16-x^2+8x-9=16\)

<=> \(16x+7=16\)

<=> \(16x=9\)

<=> \(x=\frac{9}{16}\)

1 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)

Vậy S = {3/5 ; -3/5}

b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)

\(\Leftrightarrow9=0\left(vl\right)\)

Vậy S = \(\varnothing\)

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

3 tháng 9 2016

1/

a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm

b/ Đề sai , giả sử với a = 3

c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)

d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)

 

3 tháng 9 2016

2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

BT đạt giá trị nhỏ nhất bằng 2 tại x = 3

b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

BT đạt giá trị lớn nhất bằng -2 tại x = 3