Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)
\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=4x\left(x^2-9\right)-x^3+27\)
\(=4x^3-36x-x^3+27\)
\(=3x^3-36x+27\)
\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)
\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)
\(=\left(x+6\right).0\)
\(=0\)
2/
a/ \(25x^2-1=0\)
<=> \(\left(5x\right)^2-1=0\)
<=> \(\left(5x-1\right)\left(5x+1\right)=0\)
<=> \(\orbr{\begin{cases}5x-1=0\\5x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{5}\end{cases}}\)
b/ \(4\left(x-1\right)^2-9=0\)
<=> \(\left[2\left(x-1\right)\right]^2-3^2=0\)
<=> \(\left(2x-2\right)^2-3^2=0\)
<=> \(\left(2x-2-3\right)\left(2x-2+3\right)=0\)
<=> \(\left(2x-5\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}2x-5=0\\2x+1=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{1}{2}\end{cases}}\)
c/ \(\frac{1}{4}-9\left(x+1\right)^2=0\)
<=> \(\left(\frac{1}{2}\right)^2-\left[3\left(x-1\right)\right]^2=0\)
<=> \(\left(\frac{1}{2}\right)^2-\left(3x-3\right)^2=0\)
<=> \(\left(\frac{1}{2}-3x+3\right)\left(\frac{1}{2}+3x-3\right)=0\)
<=> \(\left(\frac{7}{2}-3x\right)\left(-\frac{5}{2}+3x\right)=0\)
<=> \(\orbr{\begin{cases}\frac{7}{2}-3x=0\\-\frac{5}{2}+3x=0\end{cases}}\)<=> \(\orbr{\begin{cases}3x=\frac{7}{2}\\3x=\frac{5}{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{5}{6}\end{cases}}\)
d/ \(\frac{1}{16}-\left(2x+\frac{3}{4}\right)^2=0\)
<=> \(\left(\frac{1}{4}\right)^2-\left(2x+\frac{3}{4}\right)^2=0\)
<=> \(\left(\frac{1}{4}-2x-\frac{3}{4}\right)\left(\frac{1}{4}+2x+\frac{3}{4}\right)=0\)
<=> \(\left(-\frac{1}{2}-2x\right)\left(1+2x\right)=0\)
<=> \(2\left(-\frac{1}{4}-x\right)\left(1+2x\right)=0\)
<=> \(\orbr{\begin{cases}-\frac{1}{4}-x=0\\1+2x=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)
a) 5 - 4x = 3x - 9
\(\Leftrightarrow5-4x-3x+9=0\)
\(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x-4\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)
\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
d) \(4-2x=7-x\)
\(\Leftrightarrow4-2x-7+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
e) \(\left(x+4\right) \left(8-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow9x+6-3x-1-10-12x=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)
h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)
\(\Leftrightarrow2x-3+5x-4x-12=0\)
\(\Leftrightarrow3x-15=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
i) \(3x-6+x=9-x\)
\(\Leftrightarrow3x-6+x-9+x=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
k)\(2t-3+5t=4t+12\)
\(\Leftrightarrow2t-3+5t-4t-12=0\)
\(\Leftrightarrow3t-15=0\)
\(\Leftrightarrow t=5\)
Vậy \(S=\left\{5\right\}\)
a) ( x + 3 )( x2 - 3x + 9 ) - x( x - 2 )2 = 27
⇔ x3 + 27 - x( x2 - 4x + 4 ) = 27
⇔ x3 + 27 - x3 + 4x2 - 4x = 27
⇔ 4x2 - 4x + 27 - 27 = 0
⇔ 4x2 - 4x = 0
⇔ 4x( x - 1 ) = 0
⇔ 4x = 0 hoặc x - 1 = 0
⇔ x = 0 hoặc x = 1
b) ( x - 1 )( x - 5 ) + 3 = 0
⇔ x2 - 5x - x + 6 + 3 = 0
⇔ x2 - 6x + 9 = 0
⇔ ( x - 3 )2 = 0
⇔ x - 3 = 0
⇔ x = 3
\(\Leftrightarrow6x^2-14x+4-6x^2-12x+18-7x+3=0\)
\(\Leftrightarrow-33x=-25\Rightarrow x=\frac{25}{33}\)
2( 3x - 1 )( x - 2 ) - 6( x - 1 )( x + 3 ) = 7x - 3
<=> 2( 3x2 - 7x + 2 ) - 6( x2 + 2x - 3 ) = 7x - 3
<=> 6x2 - 14x + 4 - 6x2 - 12x + 18 = 7x - 3
<=> -26x + 22 = 7x - 3
<=> -26x - 7x = -3 - 22
<=> -33x = -25
<=> x = 25/33
<=> -36x =
\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x^2+1\right)=63\)
\(\Leftrightarrow9\left(x^2+1\right)=63\)
\(\Leftrightarrow x^2+1=7\)
\(\Leftrightarrow x^2=6\)
\(\Leftrightarrow x=\pm\sqrt{6}\)
ta có: ( x –3 )³ – ( x – 3) . ( x² + 3x + 9) + 9 (x² + 1 ) = 63
\(\Leftrightarrow x^3-3.x^2.3+3.x.3^2-3^3+3.\left(x^2+3x+9\right)-x\left(x^2+3x+9\right)+9x^2+\)\(9=63\)
\(\Leftrightarrow\left(x^3-x^3\right)-\left(9x^2-9x^2\right)+27x-\left(27-27\right)-\left(9x-9x\right)-\left(3x^2-3x^2\right)\)\(+9=63\)
\(\Leftrightarrow27x+9=63\)
\(\Leftrightarrow3x+1=7\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
vậy: x=2