Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+3x^2+2x+1=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x+3x^2+2x-x^3=1-1+8\)
\(\Leftrightarrow5x=8\)
\(\Leftrightarrow x=\dfrac{8}{5}\)
Vậy \(S=\left\{\dfrac{8}{5}\right\}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-6=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-6=0\Leftrightarrow x=6\)
Vậy \(S=\left\{2;6\right\}\)
c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-11=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-11=0\Leftrightarrow x=11\)
Vậy \(S=\left\{2;11\right\}\)
(d ko bít lèm)
#IDOL
a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)
b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)
\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)
c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)
\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)
\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{5}{2}\)
e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)
\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)
\(=\dfrac{-3\left(x-13\right)}{2x^3}\)
g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)
\(=-\dfrac{x-1}{2}\).
\(x^2-2x=24\)
<=> \(x^2-2x-24=0\)
<=> \( \left(x+4\right)\left(x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy....
\(a,\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)
\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)
\(\Leftrightarrow4\left(2+x\right)=0\)
\(\Leftrightarrow2+x=0\)
\(\Leftrightarrow x=-2\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow x=-127,5\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a,\(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow-3x^2+3x-1+3x^2+6x+3=8\)
\(\Leftrightarrow9x=6\)
\(\Leftrightarrow x=\frac{2}{3}\)
b,\(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^2+12x-8x=0\)
\(\Leftrightarrow x^2-2x-6x+12=0\)
\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c,\(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow x^2-4x+4=9x-18\)
\(\Leftrightarrow x^2-4x+4-9x+18=0\)
\(\Leftrightarrow x^2-13x+22=0\)
\(\Leftrightarrow x^2-2x-11x+22=0\)
\(\Leftrightarrow x\left(x-2\right)-11\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
d,\(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow4x^2-12x+9=25-10x+x^2\)
\(\Leftrightarrow4x^2-12x+9-25+10-x^2=0\)
\(\Leftrightarrow3x^2-2x-16=0\)
\(\Leftrightarrow3x^2+6x-8x-16=0\)
\(\Leftrightarrow3x\left(x+2\right)-8\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{8}{3}\end{matrix}\right.\)