K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

\(2x^4-9x^3-11x^2+81x=63\)

\(\Rightarrow2x^4-9x^3-11x^2+81x-63=0\)

\(\Rightarrow2x^4-2x^3-7x^3+7x^2-18x^2+18x+63x-63=0\)

\(\Rightarrow2x^3\left(x-1\right)-7x^2\left(x-1\right)-18x\left(x-1\right)+63\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x^3-7x^2-18x+63\right)=0\)

\(\Rightarrow\left(x-1\right)\left[x^2\left(2x-7\right)-9\left(2x-7\right)\right]=0\)

\(\Rightarrow\left(x-1\right)\left(2x-7\right)\left(x^2-9\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x-7\right)\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-7=0\\x-3=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=3\\x=-3\end{matrix}\right.\)

Vậy.................

Chúc bạn học tốt!!!

1 tháng 12 2015

câu d nè bạn

\(x^3+9x^2+23x+15=x^3+5x^2+4x^2+20x+3x+15\)

=\(x^2\left(x+5\right)+4x\left(x+5\right)+3\left(x+5\right)\)

=\(\left(x^2+4x+3\right)\left(x+5\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

câu c nè

\(x^3-6x^2-x+30=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)=\left(x^2-x-6\right)\left(x-5\right)\)

=\(\left(x+2\right)\left(x-3\right)\left(x-5\right)\)

tick rui minh làm tiếp cho

17 tháng 2 2017

Ví dụ 3: Giải phương trình : (4).

Giải: Ta có phương trình:

, phương trình này có nghiệm: .

Do vậy

,

.

17 tháng 2 2017

a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)

=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)

Vậy tập nghiệm của phương trình S={-2,5 ;1}

b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)

=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)

Vậy tập nghiệm của pt là S={-2;3}

7 tháng 10 2016

b) \(3x\left(x+5\right)-2x-10=0\)

\(\Leftrightarrow3x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-5\end{cases}}\)

c) \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

TH1: \(x=0\)

TH2: \(x-3=0\Rightarrow x=3\)

\(x+3=0\Rightarrow x=-3\)

Vậy:..

d) \(\left(5+2x\right)\left(2x-7\right)=4x^2-25\)

\(\Leftrightarrow\left(5+2x\right)\left(2x-7\right)=\left(2x-5\right)\left(2x+5\right)\)

 \(\Leftrightarrow\left(2x+5\right)\left(2x-7-2x+5\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\)

\(\Leftrightarrow2x+5=0\)

\(\Leftrightarrow x=-\frac{5}{2}\)

e) \(x^2-11x+30=0\) 

\(\Leftrightarrow x^2-5x-6x+30=0\)

\(\Leftrightarrow x\left(x-5\right)-6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)

1 tháng 11 2019

A.5X2+3(X+Y)2-5Y2

= 5.(x2 - y2) + 3(x+y)2

=5.( x-y).(x+y) +3(x+y)2

= ( x+y).[(5.( x-y) + 3(x+y)]

=( x+y).( 5x-5y +3x + 3y)

=( x+y).( 8x - 2y)

=( x+y).2(4x - y)

C.81x2 - 6yz - 9y2 - z2

=( 9x)2 - (z2 + 6yz+ 9y2)

=( 9x)2 -( z +3y)2

=(9x - z -3y).(9x + z+3y)

D.x2y-x3-9y+9x

=9.(x - y) + x2(y - x)

= 9.(x-y) - x2(x-y)

=(x+y).[32- x2]

=(x+y).(3-x).(x+2)

E.x3+9x2-4x-36

=(x3-4x) + (-36 +9x2)

=x.(x2-4) + 9.(x2-4)

=(x2-4).(x+9)

H.2x3+x2-8x-4

= x2.(2x+1)-4.(2x +1)

=(2x +1).(x2 -4)

= (2x +1).(x-2).(x+2)

Cậu xem trước nhé

11 tháng 8 2016

17) \(8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2-6x+9\right)\)

18) \(a^6-1=\left(a^3\right)^2-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a^2+a+1\right)\left(a+1\right)\left(a^2-a+1\right)\)

20) \(9x^4-81x^2=9\left(x^4-9x^2\right)=9x^2\left(x^2-9\right)=9x^2\left(x-3\right)\left(x+3\right)\)

11 tháng 8 2016

17)

\(8x^3+27=\left(8x\right)^3+3^3=\left(8x+3\right)\left(64x^2-24x+9\right)\)

18)

\(a^6-1=\left(a^3\right)^2-1\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=\left(a-1\right)\left(a^2-a+1\right)\left(a+1\right)\left(a^2+a+1\right)\)

19)

đề sao sao ý

20)

\(=\left(3x^2\right)^2-\left(9x\right)^2\)

\(=\left(3x^2-9x\right)\left(3x^2+9x\right)\)

\(=3x\left(x-9\right)3x\left(x+9\right)=9x^2\left(x-9\right)\left(x+9\right)\)

\(x^3+x^2+9x-10x^2-10x+25x+25\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+25\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-10x+25\right)=\left(x+1\right)\left(x-5\right)^2\)

26 tháng 7 2019

tao dep trai lam

2 tháng 10 2018

\(x^8+x^7+1=x^8+x^7-x^2-x+x^2+x+1\)

\(=x^7\left(x+1\right)-x\left(x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x+1\right)\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x.\left(x+1\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\cdot\left(x+1\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\cdot\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x.\left(x^2-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

AH
Akai Haruma
Giáo viên
3 tháng 10 2018

1)

Biểu thức không phân tích được thành nhân tử. Sửa thành:

\(x^2-5x-14=x^2+2x-7x-14\)

\(=x(x+2)-7(x+2)=(x-7)(x+2)\)

2)

\(2x^2+x-6=2x^2+4x-3x-6\)

\(=2x(x+2)-3(x+2)=(2x-3)(x+2)\)

3)

\(15x^2+7x-12\) (biểu thức không phân tích đc thành nhân tử)

4)

\(x^2+11x+30=x^2+5x+6x+30\)

\(=x(x+5)+6(x+5)=(x+6)(x+5)\)

5) \(81x^4+1\) (biểu thức không phân tích được thành nhân tử)

13 tháng 6 2016

a) \(4x^4+4x^3+5x^2+2x+1=\left[\left(2x^2\right)^2+4x^3+x^2\right]+2\left(2x^2+x\right)+1=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1=\left(2x^2+x+1\right)^2\)

b) \(3x^2+22xy+11x+37y+7y^2+10=\left(3x^2+21xy+6x\right)+\left(7y^2+xy+2y\right)+\left(5x+35y+10\right)\)

\(=3x\left(x+7y+2\right)+y\left(x+7y+2\right)+5\left(x+7y+2\right)\)

\(=\left(3x+y+5\right)\left(x+7y+2\right)\)

c) Không phân tích được.

d) \(x^4-8x+63=\left(x^4+4x^3+9x^2\right)-\left(4x^3+16x^2+36x\right)+\left(7x^2+28x+63\right)\)

\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)

13 tháng 6 2016

c) \(x^4-7x^3+14x^2-7x+1=\left(x^4-3x^3+x^2\right)-\left(4x^3-12x^2+4x\right)+\left(x^2-3x+1\right)\)

\(=x^2\left(x^2-3x+1\right)-4x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)