Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)
\(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)
\(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)
\(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)
Áp dụng BĐT Cô-si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân vế với vế của 3 BĐT trên ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)
Áp dụng BĐT \(\left(1\right)\)ta được:
\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)
\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)
\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
trong quá trình bạn xem bài mk thấy chỗ nào sai dấu thì sửa giùm mk nha trong quá trình làm mk cx có thể sai sót nhầm lẫn nha
Bài 1 :
a, Ta có : \(\left(x+3\right)^3=x\left(x-4\right)\)
=> \(x^3+9x^2+27x+27=x^2-4x\)
=> \(x^3+9x^2+27x+27-x^2+4x=0\)
=> \(x^3+8x^2+31x+27=0\)
=> \(x\approx-1,27\)
Vậy phương trình có tập nghiệm là \(S=\left\{~-1.27\right\}\)
b, Ta có : \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
=> \(\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{6\left(x-3\right)}{30}=\frac{180}{30}-\frac{10\left(1-2x\right)}{30}\)
=> \(6\left(x-3\right)=180-10\left(1-2x\right)\)
=> \(6x-18=180-10+20x\)
=> \(-14x=188\)
=> \(x=-\frac{94}{7}\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{94}{7}\right\}\)
Bài 2 :
a, Ta có : \(x^2+4x-2xy-4y+y^2\)
= \(\left(x-y\right)^2+4\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y+4\right)\)
b, Ta có : \(x\left(x-4\right)+\left(x-4\right)\left(2x+3\right)\)
\(=\left(x-4\right)\left(x+2x+3\right)\)
= \(=\left(x-4\right)\left(3x+3\right)\)
c, Ta có : \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
= \(\left(x-1-y\right)\left(x-1+y\right)\)
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))