Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x| + |x + 1| = 1
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 1
=> -2x = 2
=> x = -1(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 1
=> 0x = 0
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 1
=> 2x = 0
=> x = 0 (tm)
Vậy \(x\in\left\{-1;0\right\}\)
b) |x| + |x + 1| = 2020
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 2020
=> -2x = 2021
=> x = -1010,5(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 2020
=> 0x = 2019
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 2020
=> 2x = 2019
=> x = 1009,5 (tm)
Vậy \(x\in\left\{-1010,5;1009,5\right\}\)
c)\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
=> \(\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
=> \(\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
=> x + 19 = 0 (Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
=> x = -19
Vậy x =-19
a) | x | + | x + 1 | = 1 (*)
+) Với x < -1
(*) <=> -x - ( x + 1 ) = 1
<=> -x - x - 1 = 1
<=> -2x - 1 = 1
<=> -2x = 2
<=> x = -1 ( không thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 1
<=> -x + x + 1 = 1
<=> 0 + 1 = 1 ( luôn đúng với mọi x ) (1)
+) Với ≥ 0
(*) <=> x + ( x + 1 ) = 1
<=> x + x + 1 = 1
<=> 2x + 1 = 1
<=> 2x = 0
<=> x = 0 ( thỏa mãn ) (2)
Từ (1) và (2) => Với -1 ≤ x ≤ 0 thì thỏa mãn đề bài
b) | x | + | x + 1 | = 2020 (*)
+) Với x < -1
(*) <=> - x - ( x + 1 ) = 2020
<=> -x - x - 1 = 2020
<=> -2x - 1 = 2020
<=> -2x = 2021
<=> x = -2021/2 ( thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 2020
<=> -x + x + 1 = 2020
<=> 0 + 1 = 2020 ( vô lí )
+) Với x ≥ 0
(*) M <=> x + ( x + 1 ) = 2020
<=> x + x + 1 = 2020
<=> 2x + 1 = 2020
<=> 2x = 2019
<=> x = 2019/2 ( thỏa mãn )
Vậy x = -2021/2 hoặc x = 2019/2
c) \(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Leftrightarrow\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
\(\Leftrightarrow\frac{x+1+18}{18}+\frac{x+2+17}{17}=\frac{x+3+16}{16}+\frac{x+4+15}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Leftrightarrow\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
\(\Rightarrow x+19=0\)
\(\Rightarrow x=-19\)
1.
b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)
Ta có:
\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)
\(\Rightarrow B=42+\left|x+18\right|\ge42\)
\(\Rightarrow MIN_B=42\) khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)
Vậy \(MIN_B=42\) khi \(x=-18.\)
3.
b) \(\left|x-3\right|-\left|2x+1\right|=0\)
\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)
Chúc bạn học tốt!
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
a: Ta có: \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
\(\Leftrightarrow x^2+5x-10=x^2+3x-4\)
\(\Leftrightarrow2x=6\)
hay x=3